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VARIANTS AND EXTENSIONS OF A FAST DIRECT NUMERICAL CAUCHY-RIEMANN 

SOLVER, WITH ILLUSTRATIVE APPLICATIONS 

E. Dale Martin and Harvard Lomax 

Ames Research Center 

SUMMARY 

Revised and extended versions of a fast, direct (non terat-ire) numer- 
ical Cauchy-Riemann solver are presented for solving finite-difference 
approximations of first-order systems of partial differential equations. 
Although the difference operators treated are linear and elliptic, one signif- 
icant application of these extended direct Cauchy-Riemann solvers is in the 
fast, semidirect (iterative) solution of fluid-dynamic problems governed by 
the nonlinear mixed elliptic-hyperbolic equations of transonic flow. Different 
versions of the algorithms are derived and the corresponding FORTRAN computer 
programs for a simple example problem are described and listed. The algorithms 
are demonstrated to be efficient and accurate. 

INTRODUCTION 

Highly efficient finite-difference algorithms and programs called "fast 
direct elliptic solvers" are becoming increasingly more useful for solving 
partial differential equations in practical problems as the techniques that 
incorporate the solvers, as well as the solvers themselves, become more highly 
developed. The fast direct solvers differ from other elliptic solution algo- 
rithms in that they take advantage of the sparseness and regularity of the 
highly ordered coefficient matrix of the set of finite-difference equations 
to obtain a direct solution in a sequence of simple recursive operations. 
Thus, they are essentially noniterative, and the consequent high efficiency 
accounts for their attractiveness in various applications. 

The purposes of this report are (a) to develop highly efficient and 
stable numerical algorithms called Cauchy-Riemann solvers for use in methods 
that treat the first-order elliptic operators in generalized Cauchy-Riemann 
equations, (b)  to describe the development of several different versions of 
these algorithms, and (c) to provide a simple example computer program for 
each version, along with the subroutines for the Cauchy-Riemann solvers. 

Cauchy-Riemann solvers have significant applications in semidirect 
(globally implicit) iteration techniques for rapid solution of transonic 
flows. It is expected that, as the direct solvers become further developed 
and generalized, the significance of their applications will increase. 



Fast direct elliptic solvers were first developed for solving Poisson's 
equation on a rectangle (refs. 1-5). Since then, the algorithms have been 
generalized, extended, and applied in numerous ways: (a) Fast solvers have 
been extended to three dimensions (e.g., refs. 5 and 6, among others). 
(b) They have been further developed and extended to treat more general 
second-order elliptic equations and more general boundary conditions and 
meshes (refs. 5 and 7-17). (c) They have been extended to include interior 
conditions and irregular domains (refs. 18-23). (d) They have been extended 
to fourth-order (biharmonic) partial differential equations in references 22 
and 24. (e) They have been extended to apply to sets of first-order elliptic 
equations in reference 25. Chapter 9 in reference 26 also describes an early 
direct solver for the Cauchy-Riemann equations. However, reference 26 indi- 
cates that the algorithm described there has a very low mesh-number limitation, 
which would severely restrict the usefulness; in addition, that algorithm 
would be significantly less efficient than the "fast" solvers of references 1 
to 5 and 25 that are based on either fast Fourier transforms or cyclic reduc- 
tion. (f) Direct elliptic solvers have been applied within iteration schemes 
(i.e., semidirect methods) to extend their usefulness to nonseparable elliptic 
equations (refs. 27 and 28) and either to Poisson equations as part of a 
system of nonlinear equations (refs. 29 and 30; see also ref. 31) or as the 
total driving algorithm in a semidirect iteration of nonlinear equations 
(refs. 32-34) and of equations that are both nonlinear and nonelliptic in 
some regions of the solution domain (rsfs. 35-38). (g) In addition to other 
applications in the literature (now too numerous to attempt to list here), a 
notable application of a direct Poisson solver is as an iterative-acceleration 
device for finite-difference, line-relaxation solutions of the nonlinear, 
mixed-type equations of transonic flow (refs. 39-41). 

The fast Cauchy-Riemann solver developed in reference 25 and used in 
reference 35, and the more recent variant and extension of it used in refer- 
ences 36 to 38 (to be described below as version C), can be used in problems 
where a Poisson solver or other second-order elliptic solver could also be 
used. In addition, however, the direct solution of the corresponding set of 
first-order equations can be especially useful, for example, in fluid dynamics, 
because (a) the boundary conditions, including solid-surface conditions and 
and internal jump (e.g., shock-wave discontinuity or contact discontinuity) 
conditions, are given most naturally in terms of components of the velocity 
vector; and (b) the formulation in terms of velocity components (generalized 
Cauchy-Riemann equations) allows both point sources and point vortices to be 
included simultaneously. This is contrasted with stream-function and velocity- 
potential formulations, which are second-order partial differential equations 
(where velocity components are defined in terms of derivatives of either 
stream function or velocity potential). 
specification of point vortices but not point sources of mass, and the 
velocity-potential formulation allows specification of point sourc,es but not 
point vortices. 

The stream-function formulation allows 

In the sections below, after description of the computational meshes and 
mathematical definitions, five versions of the Cauchy-Riemann solver, denoted 
A to E, are developed. In addition, computer programs including all subrou- 
tines for each version are listed in appendices for a simple example problem 
that illustrates use of the solvers. Version A is the original version of 
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the Cauchy-Riemann solver derived in reference 25 and used for the slightly 
supercritical transonic flow problem in reference 35. The present matrix 
derivation of version A is more concise than the previous derivation, and 
more details including the program listing can be given here. A significant 
step for improving the efficiency resulted in the development of version B. 
Versions B and C are essentially the same except that additional terms (with 
constant coefficients) needed to stabilize iterations in a semidirect method 
are included in C. Version C is the solver used for the transonic-flow cal- 
culations in references 36 to 38. Versions D and E are developed for future 
use. They use a mesh that is symmetrical about the x axis, whereas the 
previous versions used different configurations for upper and lower boundaries 
on the mesh and different conditions applied there. These versions are 
especially desired for future treatment of airfoils represented by interior 
conditions specified on a slit in the center of the mesh. Version D uses 
constant coefficients on the extra stabilizing terms, whereas version E uses 
arbitrarily specified, variable (in x) coefficients on the extra terms. 
Although versions B and C together and D and E together are derived as single 
algorithms, of which the pairs of versions are special cases, the separate 
sample programs are provided for all five versions because of the differences 
in efficiency that may be significant in future applications. The distinguish- 
ing features of each version are further described in the sections dealing 
with the derivations (beginning on pages 18, 21, and 2 4 ) .  A guide for the 
prospective user's choice of algorithm is given at the end of the section 
preceding the Concluding Remarks. 

GENERAL DIFFERENTIAL AND FINITE-DIFFERENCE EQUATIONS 

The algorithm and programs to be developed are for numerical solution of 
the nonhomogeneous Cauchy-Riemann equations: 

( l b )  

or of more general extensions of equations (l), which have quite general 
physical applications. Throughout this report, the terminology of fluid 
mechanics is used. The dependent variables u and V then frequently repre- 
sent velocity components. Generally, however , for any two-dimensional vector' 
( u , ~ ) ,  equation (la) is the definition of the divergence ( s )  of the vector, 
and equation (lb) is the definition of the curl (w) of the vector or, equiva- 
lently, the "vorticity" of the vector (u ,v>.  Any point where the divergence 
S is not zero is called a ''source" of the vector ( u , ~ ) ,  and any point where 
w is not zero is called a "vortex" of the vector ( u , v ) .  In any region where 
- _- 

lAll equations and definitions in this section have three-dimensional 
counterparts, but the present scope is limited to two dimensions. 
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s is zero, the vector (u,v)  is "solenoidal," and in any region where w is 
zero, the vector ( u , ~ )  is "irrotational." Consistent with the terminology of 
fluid mechanics and the above general definitions, then, s ( x , ~ )  is here called 
a "source function," w(x,y) is called a "vorticity function," and equations (1) 
are referred to, respectively, as the "continuity equation'' and the "rotation- 
ality equation." 

The algorithms to be developed can be useful in the efficient numerical 
solution of generalized Cauchy-Riemann equations; that is, this work is 
relevant in certain ways to the following more general form of the set of 
differential equations: 

where the notation on the right side indicates that s and w can be arbi- 
trarily specified functions not only of 
variables, u and V ,  and derivatives of arbitrary order of u and v with 
respect to x and y ,  with ax being the partial-derivative operator, etc. 
Thus the equations can be both nonlinear and nonelliptic, even though the left 
side of equations (2) is a linear elliptic operator. 

x and y but also of the dependent 

Iterative schemes for the solution of equations (2) treat the right side 
as known from a previous iteration. At each iteration, then, the "iteration 
equations'' for solving the system of equations (2) are actually of the form 
of equations (l), in the simplest case, or they may be of a slightly more 
general linear form. 

The algorithms t o  be derived for solving equations (1) use central finite 
differences on the left side. For use in iteration schemes, it has been found 
(refs. 36-38) that, in some cases, certain stabilizing terms need to be added 
to both sides of the equations. Then the difference operator on the left will 
contain terms in addition to those representing the derivatives in equa- 
tions (1). The most general form of the approximate set of finite-difference 
equations to be considered here for representing equations (1) is 

+ a+u+ + a-u- = a+u+ + a-u- + s ( - )  u+ - u- + v+ - v- 
h h 0 0 
X Y 

These equations are written for a staggered mesh, which has been found to have 
numerous advantages. Refer to figure l(a), on which: the point at which 
equation (3a) is being solved is represented by ( - ) ;  the point at which equa- 
tion (3b) is being solved is represented by (+); the values of u and v at 
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the centers of the boundaries of the mesh cell for the continuity equation 
(centered at the dot) are 
at the centers of the boundaries of the mesh cell for the rotationality 
equation (centered at the cross) are u*,  u+, v*, and v+. The notations s(*) 
and w(+) in equations (3) indicate that the source function s is evaluated 
at the dot and the vorticity function w is evaluated at the cross. The 
quantities a+ and. a- in equation (3a) may generally vary with X. The 
symbols u: and u0 in equation (3a) denote some known representations of 
u+ and u-, such as an analytical solution or results from a previous itera- 
tion in an iterative solution. The quantity s ' ( - )  is defined to equal the 
right side of equation (3a). The x and y mesh intervals, hx and hy, are 
constants. 

u+, u-, v+, and V-, and the values of u and 2, 

COMPUTATIONAL, MESHES AND DISCRETIZED VARIABLES 

For the development of the computational algorithms to solve equations (3), 
the configuration of mesh cells shown in figure l(a) is imbedded in a large 
computational mesh. The different versions of the Cauchy-Riemann solver to 
be described use different treatments of the upper boundary, and so the mesh 
configurations differ there. However, since the left and bottom boundaries 
are the same for all versions, a system of mesh-point indexing can be used 
that is common to all versions, with origins of coordinate indices at or near 
the left bottom corner. 

&--h"---CI 

(a) Baslc configuration for differencing 

T k'+ I - 

I ' k  i k -  

k - l -  

rl;+ I 
r-- ~- T, 

j - l  i i 

(b) Indexing of basic configuration. 

Figure 1.- Mesh cells for continuity and rotationality equations. 
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Consider rectangular coordinates x and y and let the left and right 
boundaries be 
and y = yu. Let j and k index the x and y directions, respectively, so 
that discrete coordinates xj and yk are given by 

x = x, and x = xu, and the bottom and top boundaries be y = y, 

(44 Y 
x = x, + j h x  , Yk = Y, + kh j 

where j and k are integers. Now consider the indexing of the variables in 
figure l(a) and refer to figure l(b). 
w is defined for equation (3b) is labeled w s r k  on figure l(b). However, 
the point where the source function s 
by half intervals. 
intervals), define the discrete coordinates as 

For integers j and k, the point where 

is de$ined is displaced from wj,k 
To avoid the use of indices containing fractions (half 

2 3:' 7Ji' = y, + (k' - L)h (4b) XI.' = X~ + (jf - L)h 
2 Y  3 

where j '  and k' are integers. In order that the indices on w have the 
same values as those on s corresponding to the rotationality equation and 
the continuity equation, respectively, for the staggered mesh cells in 
figures 1, let 

The locations where u and v 
to then define 

are defined in figure l(a) make it convenient 

We thus define values of w, s ,  u ,  and v at discrete points in figure l(b) as 

A s  used in equation (3a), the second-order-accurate, central finite-difference 
approximations needed for the continuity equation are then 

6 



(a) Version A 

(b) Versions E and C 

I 
-Y = Y, 

f 
1 

ml 

i 5 
i i m 

I b  
I ;  

(c)  Versions D and E. 

F i g u r e  2.- S t agge red  computat ional  meshes. 
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and, as used in equation (3b), the second-order-accurate, central finite- 
difference approximations needed for the rotationality equation are 

The motivation for using integer values of j ,  j ' ,  k ,  and k' in equations ( 4 )  
and (7)  is that, for purposes of indexing the variables u ,  V, s, and w, there 
need not be any distinction between j and j' or between k and k ' .  Thus, 
for example, whenever uj,k is written, U j , k ~  is implied. The distinction 
is important only when determining actual locations on the mesh. 

Figure 2 shows three different mesh configurations that correspond to 
the algorithm versions indicated. Figure l(b) i s  imbedded in each mesh, as 
indicated by crosshatching (with j , k  = 2,2). The three meshes differ only 
at the upper boundary; the reasons for the differences are explained in later 
sections. The circled symbols in figure 2(a,b,c) indicate quantities that are 
specified as boundary conditions. As in figure l(a), the dots in figure 2 
indicate points where the continuity equation (3a) is to be satisfied (values 
of sjl,kf 
equation (3b) is to be satisfied (values of w j , k  specified). An exception 
to this is that on the line y = yu in figure 2(a) for version A the 
"circled ufl  symbols are at points that should also be marked by crosses 
because the rotationality equation is to be satisfied there and values of w, 
as well as u ,  are to be specified there. 

specified) and the crosses indicate points where the rotationality 

For defining the mesh dimensions and the dimensions of relevant matrices, 
let m y  ml, n ,  n1, and n2 be integers so that: 

m = the number of discrete x values where either the continuity or the 
rotationality equation is to be satisfied, that is, the number of dots o r  
crosses in a horizontal row in figures 2(a), (b), and (c) (all versions 
of the solver); 

has the value 4 for the special case illustrated in figure 2; 

ml denoted as the "mesh number for the x direction": 

= m + l ;  

has the value 5 for the special case illustrated in figure 2; 

n = number of discrete y values where the rotationality equation is to be 
satisfied in figures 2(b) and 2(c), that is, the number of crosses in a 
vertical column in figures 2(b) and 2(c) (versions B, C, D, and E of the 
solver) ; 
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= a l s o  t h e  number of d i s c r e t e  y v a l u e s  where t h e  c o n t i n u i t y  equa t ion  i s  
t o  b e  s a t i s f i e d  i n  f i g u r e  2 ( b ) ,  t h a t  i s ,  t h e  number o f  d o t s  i n  a ve r t i ca l  
column i n  f i g u r e  2 (b )  ( v e r s i o n s  B and C of t h e  s o l v e r ) ;  

h a s  t h e  v a l u e  3 f o r  t h e  s p e c i a l  case i l l u s t r a t e d  i n  f i g u r e  2 ;  

nl denoted as t h e  "mesh number f o r  t h e  y d i r e c t i o n " ;  

= n + l ;  

= 2L, where L is a p o s i t i v e  i n t e g e r ;  

= number of  d i s c r e t e  y v a l u e s  where t h e  r o t a t i o n a l i t y  equa t ion  is  t o  b e  
s a t i s f i e d  i n  f i g u r e  2 ( a ) ,  t h a t  is ,  t h e  number of  c r o s s e s  i n  a ver t ical  
column i n  f i g u r e  2 ( a )  ( v e r s i o n  A ) ;  

= a l s o  t h e  number of d i s c r e t e  ZJ v a l u e s  where t h e  c o n t i n u i t y  e q u a t i o n  is 
t o  be  s a t i s f i e d  i n  f i g u r e s  2 ( a )  and 2 ( c ) ,  t h a t  i s ,  t h e  number of d o t s  i n  
a ve r t i ca l  column i n  f i g u r e s  2 ( a )  and 2 ( c )  ( v e r s i o n s  A, D, and E); 

h a s  t h e  v a l u e  4 f o r  t h e  s p e c i a l  case i l l u s t r a t e d  i n  f i g u r e  2 ;  

n2 = n f 2; 

has  t h e  v a l u e  5 f o r  t h e  s p e c i a l  case i n  f i g u r e  2 ( a ) .  

To summarize t h e  ranges  of t h e  d i s c r e t i z e d  f u n c t i o n s  on t h e  meshes i n  
f i g u r e  2 ,  t a b l e  I i s  provided .  

TABLE 1.- RANGES OF DISCRETIZED FUNCTIONS 

Function 

j ,k' 
U 

j' ,k 
U 

j' , k '  S 

Version 
of  s o l v e r  

A 1  1 

A 1  1 

A 

Ranges of  
i n d i c e s  

j = O r o m  

k '  = 1 t o  nl 

n2 k '  = 

j' = 1 t o  m l  

k = 0 t o  n1 

k = O t o n  

j' = 1 to m 
k' = 1 t o  n1 

k' = 1 t o  n 

j = l t o m  

k = 1 to n1 

k = l t o n  

Values  of coord i -  
n a t e  where func- 
t i o n  i s  de f ined  

x = x  
j 

Y = Yi' 
Y = Y, 

j' 
Y = Yk 
Y = Yk 

j' 

x = 5' 

x = 2' 

Y = Yjcl 
Y = YiI 

x = x  
j 

Y = Yk 
Y = Yk 

D i s c r e t e  
coord ina te  

equa t ion  
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In terms of the above defined parameters, the mesh intervals hx and hY 
are 

h = (xu - x,) /[m + (1/2)] , all versions (gal X 

h = (y, - y,)/nl  , versions A , D , E  (9b) Y 

h = (y, - y,)[n + (1/2)] , versions B,C (9c) Y 

hx = (xun - x >/ml Rn 

The usefulness of these definitions is explained in the later section "FORTRAN 
Programs. I' 

MATRIX DEFINITIONS AND RELATIONS 

With the above definitions of mesh parameters and variables, we can now 
define some particular matrices and consider some matrix relations that will 
be of common use in the next four sections for developing the different ver- 
sions of the Cauchy-Riemann solvers. As described above, we do not distin- 
guish between j and j '  or between k and k '  for purposes of indexing the 
dependent variables and specified functions. 

First define the column vectors of dimension m: 

. . . , z I  I 
2 ,k' m,k 

v k = CO1[vl,k, V 

' gm,k 1 

where fj,k and gj,k are to be defined later in terms of s i , +  and w j , k .  
The range of k in equations (10) is slightly different for different ver- 
sions of the solver and is specified later. 
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With the vectors in equations (10) as elements, next define the following 
block column vectors of block dimension p or q:  

- 

m b - 

f = COl[fl, f2, . . ., f 1 
4 

mxm 

In each application of these vectors, p and q will be specified in terms of 
n. and nl. 

A general tridiagonal matrix of square dimension m is denoted by 

e 
j 

a m 

Denote a general diagonal matrix o f  square dimension m by 

Special cases are the unit matrix and null matrix, both of dimension m: 

I = T m (0,1,0) , 0 = Tm(O,O,O) (14) 

Equations (12) and (13) may also be used to define general block-tridiagonal 
and block-diagonal matrices of block dimension p ,  for example: 

11 

I 



B 

A [ 
C 

B C 

A B 

A 

C 

and 

where the arguments A, B, and C are dummy mxm matrices and 0 is defined in 
equation (14). At this point, it is also convenient t o  define the following 
special partitioned square block matrices of block dimension p :  

H =  
P 

... 

... 

... 

... 0 

... 0 

0 
_ - - _ _  

... 

J (B)  = 
P 

0 

0 

0 

and in terms of equations (15b) and (17) then define 

which is a block-diagonal matrix with the last diagonal block equal to half the 
matrix occupying each of the other diagonal blocks. 

A convenient matrix for following developments is denoted by Epq(A> and 
is defined as follows. Consider a general matrix M of dimension p x q :  

P 4  
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Let R = min{p,q). 
mii, i = 1, 2, . . ., R (whether or not p = q; see, e.g., ref. 42); the 
superdiagonal consists of the elements mg,;+1 and the subdiagonal consists 

(A), let each element on its of the elements mi,i-l. Now to define 
diagonal be a matrix -A of dimension m and let each element on its super- 
diagonal be the matrix A. Let all other elements be m-dimensional null 
matrices. Thus Epq(A) has p rows and q columns of m-dimensional blocks. 
Two special cases of interest are for q = p + 1: 

Then the diagonal is defined to consist of the elements 

P4 

E p.p+l(A) = 

and for q = p :  

-A A 

0 -A 

E (A) G E (A) = 
P PP 

-A 

0 

A 

0 

A 

-A 

-A A 

A 

0 -A 

p x  (p+l) blocks 

p x p  blocks 

It is convenient to further define some special matrices that will be of 
use in the following four sections. From here on, whenever one of these 
matrix symbols is used, it has the specific definition given in this section. 
For these definitions, let B ,  B l , j ,  and B 2 , j  be quantities that are to be 
specified later. Then, in terms of the above-defined notation, define the 
particular m-dimensional square matrices: 

(21s)  

and 

c G 21 + A B  
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where 

aj = B B , , j  
I 
I 

w i t h  
p ,  o r  q ,  o r  p x q ,  as i n d i c a t e d :  

B2,1  E 0; a l s o  d e f i n e  t h e  p a r t i c u l a r  b l o c k  matrices of b lock  dimension 

D 3 D (B) 
B P  

D 1  E D ' ( B )  
B P  

E E E (I)  (22d) 

(22e)  

P4 
T E E Block t r a n s p o s e  of E 

where A and B are  d e f i n e d  i n  equa t ions  (21) and p and q are t o  b e  s p e c i f i e d  
i n  each a p p l i c a t i o n .  

The fo l lowing  r e l a t i o n s h i p s  are  t h e n  e a s i l y  found and w i l l  b e  of p a r t i c u -  
lar  use ,  f o r  e i t h e r  q = p -  o r  q . = p  + .- ~ 1: 

For q = p :  

(2%) 
T EE = T (-1,21,-1) - J ( I )  

P P 
b u t ,  f o r  q = p + 1: 

T 
EE = T (-1,21,-1) 

P 

A s  a consequence of e q u a t i o n s  (23a) and (23b) ,  w e  f i n d  f o r  e i t h e r  q = p ~- o r  . 

q = p + l :  -~ 
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ED = [D (A)]E 
A P 

and from equations (23c) to (23f), along with (21c), that for 4 = p :  

- JPW + DP(W T EE + [D (A)]DB = T (-1,21,-I) P P 

= T (-I,C,-I) - Jp(I) 
P 

EET + [D (A)]DA = T (-1,21,-1) -. J (I) + D'(m) 
P P P P 

= T (-I,O,-I) + D'(c) P P 

and for q = p + 1: 

EET + [D (A)]DB = T (-I,C,-I) 
P P 

SIMPLEST FORMULATION OF MATRIX EQUATIONS, AND MOTIVATION 
FOR ALTERNATIVE VERSIONS 

Consider as the simplest and most straightforward formulation of equa- 
tions ( 3 )  the case where the mesh is as shown in figure 2(b) except that the 
circles are removed from the row of circled v symbols in the mesh row 
k = n. That is, values of u are specified at k' = nl  (y = y,), but v is 
not specified at k = n. 

Define 

B = h /ha: 
Y 

and assume for the formulation in this section that a+ and a- in equa- 
tions ( 3 )  are zero. Then, with the definitions in equations (4) to (8),  
equations ( 3 )  become 

for all j = 1 to m and k = 1 to n. (The value of m is arbitrary, but 
nl = n + 1 = 2L where L is an integer. This is important for the discussion 
of the most efficient cyclic reduction of the equations that result later.) 
Equations (26) are second-order accurate. With all specified boundary values 
of uj,k and V j , k  (as indicated in fig. 2(b), except as noted above) moved to 
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,,,. ._ ... . .... ~ . I  

the right sides of equations (26), denote the resulting right side of equa- 
tion (26a) by fi,k and the resulting right side of equation (26b) by 9j,k. 
Then with the vector and matrix definitions in the above section and with 

and 

- - = B (except B2,1  0 )  '1,j '2,j 

p = q = n  

the complete set of finite-difference equations (26) for all 
written as 

(28) 

can be 

or, more concisely, 
m 

Thus, equation (30a) represents the entire set of continuity equations (26a), 
and equation (30b) represents the entire set of rotationality equations (26b). 

Equations ( 3 0 )  can be reduced by eliminating u. Premultiply equa- 
tion (30a) by 
matrix equations, and use the relations (24a) and (24b) to obtain 

-E,  premultiply equation (30b) by D n ( A ) ,  add the two resulting 

[Tn(-IyC, - I )  - J n ( I ) ] V  = F (31a) 
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where 

o r  

F = A g  + f  - k k k fk+l  k = l t o p  

must be d e f i n e d  t o  be  ze ro  when p = q where, i n  t h i s  case, p = n, and f 

f o r  e q u a t i o n  (32c) t o  apply;  and where t h e  j component of t h e  v e c t o r  r ep re -  

s e n t e d  by each product  Agk i s  j u s t  '1, jgj,k ' 2 ,  j g j - 1  ,k 
k = 1 t o  p )  i n  which 82,1 0 as i n  equa t ions  (27).  

P+l 

- ( j  = 1 t o  m, 

Equat ion  (31a) i s  a b l o c k - t r i d i a g o n a l  e q u a t i o n  t o  s o l v e  f o r  v, wi th  t h e  
r i g h t  s i d e ,  F ,  e a s i l y  ob ta ined  from t h e  s imple  o p e r a t i o n s  i n d i c a t e d  i n  equa- 
t i o n  (32c) .  I n  an expanded form, f h e  b l o c k - t r i d i a g o n a l  e q u a t i o n  (31a) is  

' F 1  

F2 

Frl 

Equat ion  (31b) could be so lved  ( r e f .  25, p.  68) by a f a s t ,  d i r e c t  e l l i p t i c  
s o l v e r  f o r  each V j , k ,  and t h e n  t h e  bottom h a l f  of equa t ion  (29) could be used 
t o  s o l v e  f o r  each u j , k .  However, t h e  d i r e c t  s o l u t i o n  of equa t ion  (31b) is 
s i g n i f i c a n t l y  more d i f f i c u l t  t han  i t  would be i f  t h e  e n t r y  i n  t h e  n t h  column 
of t h e  n t h  row of t h e  b lock  c o e f f i c i e n t  m a t r i x  w e r e  c ,  l i k e  a l l  t h e  o t h e r  
d i a g o n a l  e n t r i e s ,  r a t h e r  t h a n  C - I .  

There are two approaches t h a t  one can now t a k e .  Equat ion  (31b) i s  i n  a 
form e q u i v a l e n t  t o  t h a t  ob ta ined  f o r  a Poisson  equa t ion  w i t h  a Neumann condi- 
t i o n  s p e c i f i e d  i n  a c e r t a i n  way a t  one boundary (which would r e s u l t  i n  t h e  
las t  d i a g o n a l  e n t r y ,  C - I ) .  There fo re ,  one p o s s i b l e  approach is t h a t  used by 
Sweet ( r e f .  9) and by Schumann and S w e e t  ( r e f .  1 7 )  i n  s o l v i n g  P o i s s o n ' s  equa- 
t i o n :  
m a t r i x  by developing  a s e p a r a t e  and more complicated f a c t o r i z a t i o n  f o r  ca lcu-  
l a t i o n s  du r ing  t h e  r e d u c t i o n  p r o c e s s  invo lv ing  t h a t  e lement .  A d i f f e r e n t  p o i n t  
of v i e w  avo ids  t h e  a d d i t i o n a l  compl i ca t ion  both  i n  t h e  a l g o r i t h m  development 
and i n  t h e  programming. Th i s  approach, which had been t aken  i n  r e f e r e n c e  25 
and a l s o  is  taken  h e r e ,  is t o  look  f o r  s i m p l e  ways of modifying t h e  problem 
fo rmula t ion  s o  as t o  o b t a i n  a v e r y  r e g u l a r  c o e f f i c i e n t  m a t r i x ,  w i t h  a l l  block- 
d i a g o n a l  e lements  t h e  same, so  t h a t  s imple r  a l g o r i t h m s  and programs can  b e  
used. The a l g o r i t h m  v e r s i o n s  d e s c r i b e d  i n  t h e  nex t  t h r e e  s e c t i o n s  d e a l  w i t h  
t h e  a l t e r n a t i v e  fo rmula t ions .  

t o  d e a l  d i r e c t l y  w i t h  t h e  i r r e g u l a r  element of t h e  b lock  c o e f f i c i e n t  
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VERSION A - ORIGINAL FAST DIRECT CAUCHY-RIEMANN SOLVER 

Vers ion  A d e s c r i b e d  h e r e  i s  t h e  o r i g i n a l  v e r s i o n  of t h e  Cauchy-Riemann 
s o l v e r  developed i n  r e f e r e n c e  25 and used f o r  fas t  i t e ra t ive  c a l c u l a t i o n s  i n  
a n o n l i n e a r  problem i n  r e f e r e n c e  35. The d e r i v a t i o n  is  g iven  h e r e ,  n o t  o n l y  
f o r  completeness  i n  t h e  sequence of  development bo th  of a lgo r i thms  and of  
programs, b u t  a l s o  because t h e  matrix d e r i v a t i o n  h e r e  i s  s i m p l e r  t h a n  t h a t  
g iven  i n  r e f e r e n c e  25. We a l s o  wish t o  p r e s e n t  s l i g h t l y  more d e t a i l  i n  t h e  
a l g o r i t h m  and t o  g i v e  t h e  cor responding  FORTRAN program f o r  a n  example 
problem . 

A s  exp la ined  i n  r e f e r e n c e  25, a modi f ied  t r ea tmen t  of t h e  upper  boundary 
r e s u l t s  i n  a r e g u l a r  b lock  c o e f f i c i e n t  m a t r i x  w i t h  a l l  t h e  block-diagonal  
e lements  t h e  s a m e  ( r a t h e r  t han  be ing  d i f f e r e n t  as i n  eq .  (31b)) .  The modi- 
f i e d  t r ea tmen t  changes t h e  l a s t  column of  t h e  m a t r i x  from t h e  form ob ta ined  
i n  equa t ion  (31b) ( equ iva len t  t o  a Neumann c o n d i t i o n  a p p l i e d  t o  P o i s s o n ' s  
equa t ion  i n  a c e r t a i n  way, as done i n  r e f s .  9 and 1 7 )  t o  ano the r  form t h a t  i s  
e q u i v a l e n t  t o  a Neumann c o n d i t i o n  a p p l i e d  t o  P o i s s o n ' s  equa t ion  i n  a d i f f e r e n t  
way ( a s  done i n  r e f .  5 ) ,  which i s  s imple r  t o  t r ea t  by c y c l i c  r e d u c t i o n .  The 
m o d i f i c a t i o n  of t h e  upper  boundary t o  accomplish t h i s  w a s  o r i g i n a l l y  d e r i v e d  
by working backward from t h e  d e s i r e d  r e s u l t .  The re fo re ,  t h e  m o t i v a t i o n  i s  n o t  
clear a t  t h e  beg inn ing  of t h e  d e r i v a t i o n  b u t  becomes c lear  when a c r u c i a l  s t e p  
i n  t h e  a l g o r i t h m  development i s  reached.  

Consider  t h e  mesh shown i n  f i g u r e  2 ( a ) ,  on which t h e  v a l u e  of m i s  
a r b i t r a r y  and on which t h e  number of y v a l u e s  bo th  f o r  t h e  c o n t i n u i t y  equa- 
t i o n  and f o r  t h e  r o t a t i o n a l i t y  equa t ion  i s  L 
i s  a n  i n t e g e r .  Note t h a t  t h i s  i s  one g r e a t e r  t han  t h e  dimension n used i n  
t h e  p rev ious  s e c t i o n  where f i g u r e  2(b)  w a s  used f o r  t h e  i l l u s t r a t i o n .  The 
r o t a t i o n a l i t y  e q u a t i o n  i s  t o  be a p p l i e d  a t  t h e  p o i n t s  where u is  s p e c i f i e d  
on t h e  upper boundary, as w e l l  as a l l  t h e  p o i n t s  i n d i c a t e d  by c r o s s e s .  With 
B 
and w i t h  t h e  d e f i n i t i o n s  i n  equa t ions  ( 4 )  t o  ( 8 ) ,  equa t ions  (3a)  and (3b) 

nl  = 2L, where t h e  exponent 

de f ined  by e q u a t i o n  (25) ,  t h e  assumption of  ze ro  v a l u e s  f o r  a+ and a- ,  

become 

For j = 1 t o  m-_-a_nd k = .. 1 t o  n l :  

- 
B(Uj,k u j - l , k )  

For j = 1 t o  m and k = 1 t o  n:  
~ __i__- -- - - 

-u + u + 
j , k  j , k + l  

However, f o r  t h e  r o t a t i o n a l i t y  equa t ion  a t  t h e  upper boundary o n l y  ( k  = n l ) ,  
t h e  d i f f e r e n c e  e x p r e s s i o n  f o r  ( a u / a z ~ ) j , k  g iven  i n  equa t ion  (8b) i s  r e p l a c e d  
by t h e  f i r s t - o r d e r - a c c u r a t e  expres s ion :  
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where, as indicated in figure 2(a), uj,k~+~ is evaluated on y = y,. Thus, 

as before, ignoring the distinction between j and j '  or k and k' for 
indexing, we write 

For .; = 1 to in and k = nl: 

Although equations (33a) and (33b) are second-order-accurate representations 
of equations (1) at all points, and equation (33c) is only first-order-accurate 
at the upper boundary, the applications for which the algorithm is intended 
are not significantly affected by the lower accuracy at the upper boundary, 
which is assumed to be sufficiently far from regions where any large gradients 
of u and v occur. The factor 1/2 in the denominator in equation (34), 
with the resulting factor of 1/2 multiplying B in equation (33c), is 
crucial for obtaining the desired result. With all specified boundary values 

as indicated in figure 2(a), moved to the right sides of of u and v 
equations (33a), (33b), and (33c), denote the resulting right side of (33a) 
by fj,k 
tions (33b) and (33c) by 

definitions in the section Matrix Definitions and Relations, and with 

j , k '  j , k  

(j = 1 to m, k = 1 to n l )  and the resulting right sides of equa- 

g j , k  (j = l to m, k = l to n l ) .  Then with the 

= 0 )  
B2, 1 

= B (except - 
' 1 , j  - B 2 , j  

and 

p = q = n l  

the complete set of finite-difference equations (33) for all 
written as 

~2 1 blocks nl blocks --- - -  A 

4 
I 

A I 1  0 
I 

I I - I  A 
I 

I 

I 

A I  - I  

I 

I 

I 

0 - I  '. 
I ,  B 

I 
I 0 - I  

0 

I 

L j B  

(35) 

(37) 

19 



or, more concisely, 

T DAU - E V = f 

Equations (38) can be reduced by eliminating u. Premultiply equa- 
tion (38a) by 
ing matrix equations, and use the relations (24a) and (24c) to obtain 

-E, premultiply equation (38b) by Dnl(A), add the two result- 

E (-I,O,-I) + D' (C)]V = F 
n l  n l  

where F is defined as in equations (32); but, in this case, p = nl. Again, 
since p = q ,  fp+l must be defined to be zero for equation (32c) to be valid. 

Equation (39a) is a block-tridiagonal equation for V. If we write it in 
an expanded form: 

C -I 

- I  

C -I 

-I $ c 

. .  
V1 

v2 

V 
nl . .  

we can now see the motivation for using equation (33c) containing the factor 
112 at the upper boundary. By multiplying the last column of m-dimensional 
matrices in the block coefficient matrix in equation (39b) by 2 and at the 
same time multiplying the last vector element, Vnly by 112, we obtain 

C - I  

-I C 

- I  -I 

c -21 

- I  C Fn 1 

The block-tridiagonal coefficient matrix now has a form for which the cyclic 
reduction is relatively simple for nl = 2L, L being an integer. The cyclic 
reduction of equation ( 4 0 )  to obtain all values of 
described in reference 25 (pp. 68-72). The values of uj,k are then obtained 
directly from the lower half of equation (37) (i.e.y the rotationality equa- 
tion for each j , k ) ,  from which 

v j , k  is adequately 
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and 

(k = n t o  1 )  

where ( s e e  eq. (21b))  t h e  j component of t h e  v e c t o r  r e p r e s e n t e d  by each  prod- 
u c t  Bvk is  j u s t  B(Vj,k - V j + l , k ) ,  where Vml,k i s  set e q u a l  t o  z e r o  f o r  
a l l  k = 1 t o  n l  ( s i n c e  i t  i s  a l r e a d y  inc luded  i n  

A FORTRAN program t o  s o l v e  a n  i l l u s t r a t i v e  example problem, u s i n g  sub- 
r o u t i n e s  cor responding  t o  v e r s i o n  A ,  is  d e s c r i b e d  i n  a la ter  s e c t i o n .  

g j , k ) .  

VERSIONS B AND C -FIRST REVISED AND EXTENDED CAUCHY-RIEMANN SOLVER 

The m o t i v a t i o n  f o r  deve loping  v e r s i o n  B w a s  t h e  p rospec t  of i n c r e a s e d  
e f f i c i e n c y  over  v e r s i o n  A.  Because v e r s i o n  A ( a s  d e s c r i b e d  above) c o n t a i n s  a 
b l o c k - t r i d i a g o n a l  m a t r i x  equa t ion  t o  s o l v e  t h a t  i s  e q u i v a l e n t  t o  a d i s c r e t e  
Poisson  equa t ion  w i t h  a Neumann c o n d i t i o n ,  t h e  c y c l i c  r e d u c t i o n  is  less e f f i -  
c i e n t  t h a n  would be t h e  c y c l i c  r e d u c t i o n  of t h e  cor responding  e q u i v a l e n t  
m a t r i x  equa t ion  d e r i v a b l e  from P o i s s o n ' s  e q u a t i o n  w i t h  a l l  D i r i c h l e t  condi- 
t i o n s .  The l a t t e r  i s  known t o  r e q u i r e  one less c y c l e  of r e d u c t i o n  c o n t a i n i n g  
a s i g n i f i c a n t  number of o p e r a t i o n s ,  i n  bo th  t h e  forward and backward r ecu r -  
s i o n s .  The re fo re ,  t h e  o b j e c t i v e  w a s  t o  change t h e  c o n d i t i o n  a p p l i c a t i o n  a t  
t h e  upper boundary so t h a t  t h e  b l o c k - t r i d i a g o n a l  m a t r i x  o b t a i n e d  would have 
a l l  d i a g o n a l  b locks  t h e  s a m e ,  as i n  equa t ion  ( 4 0 ) ,  b u t  a l s o  have a l l  super -  
and subdiagonal  b l o c k s  t h e  s a m e ,  as i n  e q u a t i o n  (31b).  The r e v i s e d  method f o r  
t r e a t i n g  t h e  upper boundary could a l s o  a l l e v i a t e  e f f e c t s  of t h e  dec reased  
accuracy  a t  t h e  upper boundary i n  v e r s i o n  A i n  problems where t h o s e  e f f e c t s  
could  be  s i g n i f i c a n t .  

A t  t h e  t ime t h e  r e v i s e d  v e r s i o n  B w a s  be ing  developed t o  i n c r e a s e  t h e  
e f f i c i e n c y ,  i t  w a s  a l s o  found, i n  t h e  s t u d i e s  t h a t  w e r e  t o  be r e p o r t e d  l a t e r  
i n  r e f e r e n c e s  36 and 37, t h a t  c e r t a i n  terms needed t o  be added t o  t h e  s o l v e r  
t o  s t a b i l i z e  t h e  i t e r a t i o n s  i n  t h e  f a s t  s e m i d i r e c t  i t e r a t i v e  method f o r  t h e  
n o n l i n e a r ,  mixed e l l i p t i c - h y p e r b o l i c  problem of t r a n s o n i c  flow. T h e r e f o r e ,  
t h e  a l g o r i t h m  f o r  v e r s i o n  B w a s  extended t o  i n c l u d e  t h e  t e r m s  a+u+ + a-u- 
i n  e q u a t i o n s  ( 3 ) ,  w i t h  c o n s t a n t  v a l u e s  of  a+ and a-. This extended a lgo-  
r i t h m ,  v e r s i o n  C y  i s  t h e  one used f o r  a l l  t h e  c a l c u l a t i o n s  made i n  r e f e r -  
ences  36 t o  38. S ince  v e r s i o n  B can be regarded  as a s p e c i a l  c a s e  of 
v e r s i o n  C y  t h e  d e r i v a t i o n s  are combined. However, t h e  s u b r o u t i n e s  f o r  
v e r s i o n  B are s l i g h t l y  more e f f i c i e n t  t h a n  t h o s e  f o r  C and can  be  used f o r  
t h e  same problems as v e r s i o n  A ,  where t h e  e x t r a  t e r m s  are n o t  r e q u i r e d .  

Consider f i g u r e  2 ( b ) ,  on which m i s  a r b i t r a r y  and n l  = n + 1 = 2L 
w i t h  L an i n t e g e r  f o r  t h e  s i m p l e s t  and most e f f i c i e n t  c y c l i c  r e d u c t i o n  of 
r e s u l t i n g  equa t ions .  Note t h a t  on t h e  upper boundary, a t  k' = nl (y = y u ) ,  
v a l u e s  of u ( c i r c l e d  symbols) are s p e c i f i e d .  It i s  a l s o  i n d i c a t e d  t h a t ,  
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a t  a h a l f  i n t e r v a l  below t h e  upper boundary, a t  k = n ,  v a l u e s  of  v are 
a l s o  t o  b e  s p e c i f i e d .  (Such c o n d i t i o n s  i n  most p h y s i c a l  problems are n o t  
d i f f i c u l t  t o  o b t a i n .  For  example, i n  refs. 36 t o  38, a n a l y t i c a l  a sympto t i c  
c o n d i t i o n s  v a l i d  s u f f i c i e n t l y  f a r  from y = y a  w e r e  s p e c i f i e d  f o r  u a t  
k' = nl and f o r  v a t  k = n. In t h e  even t  t h a t  v a l u e s  of  u and v would 
b e  known o n l y  a t  a s i n g l e  boundary l i n e ,  y = y u ,  t h e  d i s c r e t i z e d  c o n t i n u i t y  
equa t ion  could b e  used t o  o b t a i n  cor responding  v a l u e s  of  v on k = n t o  
s p e c i f y  as i n p u t . )  A s  w a s  t h e  case i n  t h e  p rev ious  s e c t i o n  f o r  v e r s i o n  A ,  
t h e  m o t i v a t i o n  f o r  t h i s  p a r t i c u l a r  m o d i f i c a t i o n  of t h e  upper-boundary treat- 
ment i s  n o t  obvious  a t  t h e  beginning  s i n c e  t h e  n e c e s s a r y  m o d i f i c a t i o n  w a s  
o r i g i n a l l y  ob ta ined  by working backward from a d e s i r e d  r e s u l t .  A f t e r  a cer- 
t a i n  p o i n t  i s  reached  i n  t h e  d e r i v a t i o n ,  t h e  r eason  f o r  s p e c i f y i n g  v a t  
k = n w i l l  become clear. 

The s p e c i f i c a t i o n  of v on k = n ,  t h e  c r u c i a l  f e a t u r e  of  t h i s  a l g o r i t h m  
t h a t  l e a d s  t o  t h e  d e s i r e d  r e s u l t ,  a l l ows  us  t o  add a n  unknown, ~ j , ~ ,  t o  t h e  
l e f t  s i d e  of  each c o n t i n u i t y  equa t ion  and t o  add t h e  cor responding  s p e c i f i e d  
q u a n t i t y ,  denoted by  UT)^, t o  t h e  r i g h t  s i d e .  
( V Y ) ~ ,  w e  a l s o  s h a l l  de te rmine  v i y n  as p a r t  of t h e  s o l u t i o n  a lgo r i thm.  Also 
f o r  use  i n  e q u a t i o n s  (3)  w i t h  nonzero v a l u e s  of 

Thus, even though w e  s p e c i f y  

a+ and a- ,  l e t  

and i n  terms of t h e s e  parameters ,  a long  wi th  B d e f i n e d  by e q u a t i o n  (25 ) ,  
l e t  

Then cor responding  t o  f i g u r e  2 ( b ) ,  w i t h  equa t ion  ( 3 a ' )  a p p l i e d  a t  a l l  t h e  d o t s  
and equa t ion  (3b) a p p l i e d  a t  a l l  t h e  c r o s s e s ,  w i t h  t h e  d e f i n i t i o n s  i n  equa- 
t i o n s  (4)  t o  ( 8 ) ,  w e  w r i t e  f o r  a l l  j = l t o  m and a l l  ~~ k = l t o  n:  

With an  a p p r o p r i a t e  expres s ion  f o r  s:,k, as i n  e q u a t i o n  ( 3 a ) ,  t h e s e  e q u a t i o n s  
are second-order-accurate  r e p r e s e n t a t i o n s  of e q u a t i o n s  (1). 

Now, w i t h  a l l  s p e c i f i e d  boundary v a l u e s  of  uj,k and V j , k  as i n d i c a t e d  
i n  f i g u r e  2 (b )  (except  
denote  t h e  r e s u l t i n g  r i g h t  s i d e s ,  r e s p e c t i v e l y ,  by 
k = 1 t o  n ) .  
R e l a t i o n s ,  and w i t h  

v i y n  ) moved t o  t h e  r i g h t  s i d e s  of e q u a t i o n s  (44 ) ,  
fj,k and g ' , k  ( j  = 1 t o  m, 

Then w i t h  t h e  d e f i n i t i o n s  i n  t h e  s e c t i o n  Mat r ix  6 e f i n i t i o n s  and 
B l , j  and B2,j d e f i n e d  by e q u a t i o n s  (43) and 

p = q = n  (45) 
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the complete set of finite-difference equations ( 4 4 )  for all j , k  can be 
written as 

n blocks n blocks 

A 1 1  0 I 

A I - I  I I 

h * 
c 4 c  4 

I 

I 

I 0 
I 

A I 

A '  
I 

-I I I 

-I 21 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ - - - - - - - - - -  

-I I I B  

0 -I I I B 
I 

I 

I 

I 

0 -I I '  
I 

0 -I I B 

B 

With the additional use in this section of the matrix Hn defined by equa- 
tion (16), the more concise formulation of equation (46) is 

(47a) 
T 

E U + D V = g  (47b) 

D U +  (-E + H  ) V = f  
A n 

B 

Equations (47) can be reduced by eliminating u. Premultiply equa- 
tion (47a) by -E,  premultiply equation (47b) by D n ( A ) ,  add the two result- 
ing equations, and use the relations (24a) and (24b) to obtain 

[T (-I,C,-I) - J (I) - EH ]V = F (48) n n n 

where F is defined as in equations (32) with p = n ,  and where, since 
9 = P ,  'p+1 
the motivation for introducing into equation (44a), which resulted in 
the term with the matrix H, in equation (47a), becomes evident. The iden- 
tity 

in equation (32c) must be defined t o  be zero. At this point, 
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y i e l d s ,  from e q u a t i o n  (481,  

[T,(-I ,C , - I )  ]V = F ( 5 W  

which i s  t h e  d e s i r e d  s i m p l e  and v e r y  r e g u l a r  form of t h e  b l o c k - t r i d i a g o n a l  
e q u a t i o n  f o r  V:  

C -I 

- I  C 

-I 

-I C 

F l  

F 2  

Fn 

Vers ion  C u s e s  c y c l i c  r e d u c t i o n  of e q u a t i o n  (50b) ,  w i t h  t h e  m a t r i x  C 
B l , j  and B 2 , j -  are de f ined  by de f ined  by e q u a t i o n s  (21c) and (21d) ,  where 

equa t ions  ( 4 3 ) .  Vers ion  B i s  f o r  t h e  s p e c i a l  case where a1 and E 2  i n  equa- 
t i o n s  ( 4 3 )  are zero.  The c y c l i c  r e d u c t i o n  p r o c e s s  f o r  o b t a i n i n g  a l l  v a l u e s  of 

v j  k and is  d e s c r i b e d  i n  appendix  F. The v a l u e s  of U j , k  are then  ob ta ined  
d i r e c t l y  from t h e  lower h a l f  of equa t ion  (46) ,  from which 

from e q u a t i o n  (50b) i s  s l i g h t l y  d i f f e r e n t  from t h a t  used i n  v e r s i o n  A 

where Un+, i s  set e q u a l  t o  z e r o ,  and where t h e  j component of t h e  v e c t o r  
r e p r e s e n t e d  by each  product  Bvk i s  j u s t  @(Vj ,k  - Vj+l ,k)  w i t h  Vml,k se t  
e q u a l  t o  ze ro  f o r  a l l  k = 1 t o  n ( s i n c e  it i s  a l r e a d y  inc luded  i n  g j , k ) .  

FORTRAN programs t o  s o l v e  t h e  i l l u s t r a t i v e  example problem, us ing  sub- 
r o u t i n e s  cor responding  t o  b o t h  v e r s i o n s  B and C y  are  desc r ibed  i n  a la ter  
s e c t i o n .  

VERSIONS D AND E - SECOND REVISED AND EXTENDED CAUCHY-RIEMA" SOLVER 

For c u r r e n t  and f u t u r e  a p p l i c a t i o n s  of a f a s t  d i r e c t  Cauchy-Riemann 
s o l v e r ,  i t  is  d e s i r e d  t o  apply  c o n d i t i o n s  on v on t h e  h o r i z o n t a l  c e n t e r l i n e  
of t h e  mesh (by methods beyond t h e  scope of t h i s  r e p o r t ) .  It is  t h e r e f o r e  
d e s i r e d  t o  have t h e  upper and lower boundar ies  symmetr ica l ly  l o c a t e d  above 
and below t h e  c e n t e r l i n e  and t o  have t h e  s a m e  t y p e  of boundary c o n d i t i o n  
a p p l i e d  a t  bo th  boundar i e s .  We t h e r e f o r e  c o n s i d e r  t h e  mesh c o n f i g u r a t i o n  
shown i n  f i g u r e  2 ( c ) ,  on which boundary v a l u e s  of v are  s p e c i f i e d  on t h e  
upper and lower boundar i e s ,  u i s  s p e c i f i e d  on t h e  l e f t ,  and v on t h e  r i g h t .  

There i s  a f u r t h e r  m o t i v a t i o n  f o r  pu r su ing  t h e  fo rmula t ion  f o r  t h e  con- 
f i g u r a t i o n  i n  f i g u r e  2 ( c ) .  One qu ick ly  obse rves  t h a t  each  column of d o t s  
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contains one more point for the continuity equation to be solved than the 
number of crosses in a column of the points for the rotationality equation. 
Correspondingly, one observes that the number, q ,  of unknown values of u 
in a vertical column is also one more than the number, p ,  of unknown values 
of V .  Thus, in equations (li), 

q = p + 1  (52) 

If one then recalls the formulations in previous sections (e.g., eq. (29)), 
he notes that the quarter partitions of the block coefficient matrix are 
square because q = p there. Consider that the number of rows of mxm 
matrices in the upper partition of equation (29) is q (the number of Uk 
vectors), whereas the number of rows in the lower partition is p (the number 
of Vk vectors); the number of columns in the left partition of the coeffi- 
cient matrix must be q ,  whereas the number of columns in the right partition 
must be p in order for the indicated matrix multiplication to be defined. 
Thus the upper left partition has block dimension 
the lower left pxq,  and the lower right p x p .  Recalling also the identity 
(24d), we have an indication that the simplest and most regular coefficient 
matrix after reduction may be obtained quite naturally for 
whereas it was not obtained naturally (i.e., without the tricks used for 
versions A,  B, C), for example, in the section Simplest Formulation of Matrix 
Equations, in which it was assumed that the number of rotationality equations 
was the same as the number of continuity equations ( p  = q ) ,  and all block 
matrices other than vectors were square. Thus, the simplicity of the matrix 
in the identity (24d) (with the implied corresponding high efficiency of the 
algorithm that would result) encourages the pursuit of the formulation cor- 
responding to figure 2(c) with nonsquare matrices. 

4x4,  the upper right qxp,  

q = p + 1, 

Versions D and E of the extended Cauchy-Riemann solver are derived here 
as a single algorithm for the mesh in figure 2(c). Version D is the special 
case with constant coefficients, a+ and a-, in the extra terms (a%+ + a-u-) 
in equation (3a), whereas version E allows coefficients that are arbitrarily 
variable in x. 

Figure 2 (c) requires 

p = n ,  q = n l = n + l  (53 )  

This requirement, with nl = 2 L ( L ,  an integer), will result in a matrix 
equation for which the cyclic reduction is simplest and most efficient. The 
value of m, as in the other versions, is arbitrary. 

For use in equations ( 3 ) ,  let a+ and a- be defined, respectively, at 
the same points as 
of figure l(b), then, let 

u+ and u- in figure l(a) . To use the indexing notation 
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and i n  terms of  t h e s e  parameters ,  a long  w i t h  B d e f i n e d  by e q u a t i o n  (25) ,  l e t  

- 
-I--- 

- - 
I 0 

- I  I 

A I 

I 

I 

I 

I 

I 

I 

I 

A 

0 

I 

- I  .-. 
A 

A I  - I  
- - - - - - - - - - - - - -  I - - - - - - - - - - -  

B I 

I 

I 

I 

I 

I 

- I  I 

0 -I I B 

B 
I ,  - 0 -I - 

B1, j  = B ( 1  - a l , j )  I (55) 

Then cor responding  t o  f i g u r e  2(c), w i t h  e q u a t i o n  (3a ' )  a p p l i e d  a t  a l l  d o t s  
and e q u a t i o n  (3b) a p p l i e d  a t  a l l  c r o s s e s ,  w i t h  t h e  d e f i n i t i o n s  i n  equa- 
t i o n s  ( 4 )  t o  (8), w e  w r i t e  

For  a l l  j = 1 t o  ~~ m and - .~ a l l  k = 1 t o  n l :  - 

For a l l  j = 1 t o  ~. m . -  and a l l  - k = 1 ... t o  n :  

With an  a p p r o p r i a t e  r e p r e s e n t a t i o n  of  
t i o n s  are second-order-accurate  r e p r e s e n t a t i o n s  of e q u a t i o n s  (1). 

s i , k  as i n  e q u a t i o n  ( 3 a ) ,  t h e s e  equa- 

With t h e  s p e c i f i e d  boundary v a l u e s  of uj,k and vj,k i n d i c a t e d  i n  

g j , +  

f i g u r e  2 ( c )  moved t o  t h e  r i g h t  s i d e s  of equa t ions  (56) ,  deno te  t h e  r e s u l t i n g  
r i g h t  s i d e s ,  r e s p e c t i v e l y ,  by 
( j  = 1 t o  m and k = 1 t o  n ) .  
Matr ix  D e f i n i t i o n s  and R e l a t i o n s ,  and w i t h  
t i o n  (55) ,  t h e  complete  se t  of f i n i t e - d i f f e r e n c e  e q u a t i o n s  (56) f o r  a l l  

fj,k ( j  = 1 t o  m, k = 1 t o  n l )  and 
Then, w i t h  t h e  d e f i n i t i o n s  i n  t h e  s e c t i o n  

b1, j  and B2,j d e f i n e d  by equa- 

(57) 



o r ,  more c o n c i s e l y ,  

Note t h a t ,  i n  t h i s  fo rmula t ion ,  E and ET are  nonsquare and DA and DB are  
s q u a r e  bu t  of d i f f e r e n t  b lock  dimensions ( s e e  eqs .  (22 ) ) .  

Equat ions  (58) can  b e  reduced by e l i m i n a t i n g  U. Premul t ip ly  equa- 
t i o n  (58a) by -E,  p r e m u l t i p l y  e q u a t i o n  (58b) by D,(A), add t h e  two r e s u l t i n g  
e q u a t i o n s ,  and use  e q u a t i o n s  (24a) and (24d) t o  o b t a i n  d i r e c t l y  t h e  s imple  
and ve ry  r e g u l a r  form of t h e  b l o c k - t r i d i a g o n a l  e q u a t i o n  f o r  V: 

[T , ( - I ,C , - I ) ]V  = F (59) 

where F is  d e f i n e d  as i n  equa t ions  (32) w i t h  p = n, q = n l .  ( I n  t h i s  
case, t h e r e  i s  no s p e c i a l  c o n d i t i o n  on 
E w a s  squa re . )  The expanded form of equa t ion  (59) is  i d e n t i c a l  t o  equa- 
t i o n  (50b) ,  except  t h a t  i n  t h i s  case c has  been al lowed t o  have v a r i a b l e  
e lements  (eqs .  (21c) and (21d) w i t h  ( 5 5 ) ) .  

fp+l as t h e r e  w a s  i n  t h e  cases where 

Version E of t h e  s o l v e r  u s e s  c y c l i c  r e d u c t i o n  of equa t ion  (59 ) .  V e r -  

c11, The c y c l i c  r e d u c t i o n  p rocess  $or  o b t a i n i n g  a l l  v a l u e s  of V j , k  
i n  equa t ion  (55) are 

J - 1  s i o n  D i s  f o r  t h e  s p e c i a l  case where 
c o n s t a n t s .  
from equa t ion  (59) i s  d e s c r i b e d  i n  appendix F. 

and c12 

The procedure  f o r  o b t a i n i n g  t h e  Uk a f t e r  a l l  Vk are  known i s  somewhat 
d i f f e r e n t  from t h e  p rev ious  v e r s i o n s  s i n c e  k ranges  from 1 t o  n f o r  V k  
b u t  from 1 t o  n1 f o r  Uk. A f t e r  Un, i s  de termined ,  t h e  lower p a r t i t i o n  of 

equa t ion  ( 5 7 )  ( i . e . ,  r o t a t i o n a l i t y  equa t ions )  can be  used t o  o b t a i n  t h e  
remaining Vk: 

U = U  + B V  - g k  ( k  = n ,  n - 1, . . ., 1) ( 6 0 )  k k+i 

i n  which t h e  j component of t h e  v e c t o r  r e p r e s e n t e d  by each product  BVk 
i s  B(vj,k - ~ j + ~ , k )  wi.th vml,k se t  e q u a l  t o  z e r o  f o r  a l l  k ( s i n c e  i t  i s  

a l r e a d y  inc luded  i n  g j , k ) .  To o b t a i n  Unl b e f o r e  e q u a t i o n  (60) i s  used ,  
several d i f f e r e n t  approaches can be  taken .  L e t  u s  r e f e r  t o  t h e s e  as o p t i o n s  
( a ) ,  (b ) ,  ( c ) ,  and (d)  and c o n s i d e r  them i n  d e t a i l .  For  o p t i o n  ( a )  t o  
de te rmine  
t h a t  i s ,  t h e  c o n t i n u i t y  e q u a t i o n  f o r  t h e  t o p  row of  d o t s  i n  f i g u r e  2 ( c ) :  

U n , ,  w e  u s e  t h e  bottom row of t h e  upper  p a r t i t i o n  i n  e q u a t i o n  ( 5 7 ) ,  

- vn = n l  

I 
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or 

for j = 1 to m (with u C y n l  set equal to zero since it has been included in 
). Because some difficulty has been encountered and studied in use of 

f 1 ,nl 
this option in version D of the solver, it has not been included in version E 
with variable B l , j  and B 2 , j .  
difficulty, we consider only the case (i.e., version D only) where 

Therefore, for discussing the nature of the 

with 6, and 6, as constants. Further, let 

I w = u .  
ii 2 'nl 

r j  = ' j , n  + f j , n ,  

and write equation (61b) as 

Blwj  - B2wj-, = r j 
( j  = 1 to m) 

in which w0 = 0 or, equivalently, as 

This is a common form of difference equation, which can be studied by standard 
techniques in stability theory to determine that the equation is stable if 
1x1 < 1, i.e., 1 6 2 / B l l  G 1. 
to an instability in the determination of the 

when the values of 61 and 02  were chosen so that IB2/@1 I > 1. 

In fact, the difficulty encountered was traced 

uj ,n1 by this option only 

Because of the stability difficulty with option (a) in these cases, 
further options were considered that find the u -  without using the top 
row of continuity equations on the mesh in figure 2(c). Option (b) is to just 
specify each 

used, as 

d Ynl 

Uj,nly in the step of the algorithm before equation (60) is 
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where  UT)^ 
totic boundary condition evaluated at each j and at k' = nl in figure 2(c). 
Options (c) and (d) use, instead, different variants of the rotationality 
equation to replace equation (56b) for application at points on y = yu 
(fig. 2(c)) halfway between the v input points and directly above each of 
the interior u points (i.e., at k = n l ,  all j ) .  For these two options, 
let ( i l T ) j  be the respective values of u specified at these points on 
y = y u ,  and denote au/ay at these same points by (au /ay)T, j .  Option (c) 
will use a first-order-accurate expression for (au /ay> 
difference approximation given in equation (8b) that resulted in the rota- 
tionality difference equation (56b). Similarly, option (d) will use a dif- 
ferent second-order-accurate approximation for (au /ay)T, j .  
accurate expression, to replace (aulay)j ,k  
k = n l ,  is 

is obtained from some analytical representation such as an asymp- 

to replace the T , j  

The first-order- 
given by equation (8b), at 

Thus, for option (c), the replacement for equation (56b) rearranges to 

For option (d), the second-order-accurate expression, to replace (au/ay)j,k 
given by equation (8b), at k = n l ,  is 

The resulting replacement for equation (56b) is 

Before equation (70) can be solved for 
This can be done by adding equation (70) to (56b) written at k = n:  

~ j , ~ ~ ,  one must eliminate us 3 ,n. 

to obtain, after rearranging, 

which is the equation used to evaluate 
tion (60) is used in the algorithm. ~ j , ~ ~  for option (d) before equa- 

29 



FORTRAN programs to solve the illustrative example problem, using sub- 
routines corresponding to both versions D and E, are described later. 

EXAMPLE PROBLEM FOR ILLUSTRATION 

To illustrate the use of the variants and extensions of the Cauchy- 
Riemann solver, and as a basis for a complete sample program to be given for 
each version, consider the same problem used in reference 25. The sample 
programs can be used to determine such factors as computing times required 
for significant portions of the calculations and accuracy of the numerical 
results. 

The problem is the small-perturbation formulation for steady, irrota- 
tional, incompressible, inviscid flow over a thin symmetrical parabolic-arc 
biconvex airfoil aligned with a uniform stream far from the airfoil. This 
problem has a simple mathematical formulation and the analytical solution 
is available for comparison with numerical results. A l s o ,  the problem has 
the interesting property of containing singularities, which should be captured 
by the numerical solution. The problem formulation and programs also consti- 
tute a basis for extensions to the more complex problems of nonlinear subsonic 
and transonic aerodynamics (refs. 35 to 38). 

In Cartesian coordinates ( x , y ) ,  let U and V be the respective com- 
ponents of velocity. For the classical small-perturbation approximation, let 

u = U m ( l  + T U )  , v = U,TV (72) 

where u and v are then dimensionless scaled perturbation velocities, Um 
is the uniform velocity at infinity, and T is the small thickness ratio of 
the airfoil. If these expressions are substituted into the governing gas- 
dynamic conservation equations, the resulting equations for u ( x , y )  and 
v ( x , y )  are the Cauchy-Riemann equations: 

Let both x and y be normalized by the chord length of the airfoil and let 
the x axis be along the chord and the y axis be the perpendicular bisector 
of the chord. Then the biconvex-airfoil surface y = yb(x)  is given by 

In thin-airfoil theory, the 
y = yb(x)  is transferred to 

-t.l(+ - 2x2) , (- 7 1 G x G ') 2 

condition of flow tangency at the 
by use of Taylor's series y = 0 

(74) 

airfoil surface 
(see, e.g., 
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r e f .  43).. The f i r s t - o r d e r ,  t h i n - a i r f o i l  r e s u l t  f o r  t h e  boundary c o n d i t i o n  i s  
t h e n  

TV(X,O+) = dy /dx i n  b 
o r  

1 
= o f o r  1x1 > ?  

The c o n d i t i o n  of uniform f low a t  i n f i n i t y  r e q u i r e s  t h a t  

The a n a l y t i c a l  s o l u t i o n  t o  e q u a t i o n s  (73) w i t h  c o n d i t i o n s  (75) and (76) ( s e e  
t a b l e  A . 2  of r e f .  44, p .  2 1 ) ,  i n  t e r m s  of t h e  complex v a r i a b l e  z = x + i y ,  
is  

from which, a t  y = 0,  

U(X,O) = - 1 - x 
7r 4 1  

Note from c o n d i t i o n s  (75) t h a t  v h a s  a 
and t r a i l i n g  edges (1x1 = 1 / 2 )  and,  from 
n e g a t i v e  i n f i n i t y  t h e r e .  

d i scon t inuous  jump a t  b o t h  t h e  l e a d i n g  
e q u a t i o n  (78 ) ,  t h a t  u goes t o  

For t h e  computa t iona l  problem, because of symmetry w e  c o n s i d e r  on ly  t h e  
ha l f -p l ane  y 2 0 and u s e  c o n d i t i o n s  (75) a t  p o i n t s  a long  t h e  computa t iona l  
boundary y = yu, x = xi, and 
x = xu d e f i n e  t h e  boundary l i n e s  where c o n d i t i o n s  are  t o  b e  a p p l i e d  and con- 
s i d e r  u s ing  e i t h e r  u = uo(x,y) o r  v = v0(x,y) as t h e  c o n d i t i o n s  t o  be  
a p p l i e d  t h e r e ,  where uo and v0 are t h e  a n a l y t i c a l  e x p r e s s i o n s  ob ta ined  from 
t h e  r ea l  and imaginary p a r t s  of t h e  e x a c t  s o l u t i o n  (77) .  With t h e s e  exact 
s o l u t i o n s  a p p l i e d  on t h e  o u t e r  boundar ies ,  r e p l a c i n g  t h e  a sympto t i c  condi- 
t i o n s  (76) ,  t h e  i l l u s t r a t i o n s  w i l l  n o t  be  a f f e c t e d  by e r r o r s  due t o  approxi -  
m a t e  methods f o r  app ly ing  c o n d i t i o n s  a t  i n f i n i t y .  However, one could  a l s o  u s e  
z e r o  p e r t u r b a t i o n s  (u = v = 0) on t h e  o u t e r  boundar ies  as approximate condi- 
t i o n s ¶  and t h i s  o p t i o n  is  al lowed f o r  i n  t h e  programs d e s c r i b e d  i n  t h e  n e x t  
s e c t i o n .  Therefore ,  l e t  u s  deno te  t h e  o u t e r  boundar ies  (x~,xU,yU) as B and 
denote  t h e  c o n d i t i o n s  t h e r e  as 

y = y L  = 0 .  For t h e  o u t e r  boundar i e s ,  w e  l e t  

u = uB(x,y) o r  v = vB(x,y) on B (79) 
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where U B  may be  e i t h e r  uo o r  0 and V B  may b e  e i t h e r  vo o r  0. The 
c h o i c e  of whether  t o  s p e c i f y  U B  o r  V B  a t  p o i n t s  on a s e c t i o n  of B 
depends on which v e r s i o n  of t h e  a l g o r i t h m  d e s c r i b e d  p r e v i o u s l y  is used. 
Furthermore,  i n  v e r s i o n s  B and C y  where ( v T ) ~  
i n t e r v a l  i n s i d e  t h e  upper boundary, ( v T ) ~  
VB(X,~); i n  v e r s i o n s  D and E, i n  which   UT)^ 
h a l f - i n t e r v a l  i n s i d e  t h e  upper boundary f o r  o p t i o n  (b) o r  on t h e  upper 
boundary f o r  o p t i o n s  ( c )  and ( d ) ,  ( u Y ) ~  

must be  s p e c i f i e d  a t  a h a l f -  

must be s p e c i f i e d  e i t h e r  a t  a 
can  be  ob ta ined  from t h e  f u n c t i o n  

can  b e  ob ta ined  from t h e  f u n c t i o n  
UB(X,y) 

To t e s t  and i l l u s t r a t e  a l l  v e r s i o n s  of t h e  a l g o r i t h m ,  i n c l u d i n g  t h o s e  
w i t h  t h e  e x t r a  t e r m s  i n  equa t ion  ( 3 a ) ,  u s i n g  t h i s  example problem governed by 
e q u a t i o n s  (73) ,  l e t  us r e p r e s e n t  e q u a t i o n s  (73) by t h e  f i n i t e - d i f f e r e n c e  equa- 
t i o n s  (3) w i t h  t h e  n o t a t i o n  d e f i n e d  i n  e q u a t i o n s  ( 4 )  t o  (8) and w i t h  s and w 
e q u a l  t o  ze ro ,  so  t h a t ,  i n  equa t ions  (3a)  and ( 3 a ' ) :  

i n  t h o s e  c a s e s  f o r  
t h e  t e r m  s 3 , k  i n  

and f o r  v e r s i o n s  D 

which a+ and a- are n o t  ze ro .  The re fo re ,  f o r  v e r s i o n  C y  
e q u a t i o n  (44a) is  

and E ,  i n  equa t ion  (56a ) ,  

where uo is  t h e  e x a c t  s o l u t i o n  de f ined  above. 

To summarize t h e  numer ica l  example problem f o r  i l l u s t r a t i o n ,  t h e  d i f f e r -  
ence  e q u a t i o n s  approximat ing  t h e  p a r t i a l  d i f f e r e n t i a l  equa t ions  (73) are 
e q u a t i o n s  (3) w i t h  (80) r e p r e s e n t e d  by e q u a t i o n s  (81) f o r  t h e  a l g o r i t h m  ver -  
s i o n s  w i t h  t h e  e x t r a  terms; t h e  boundary c o n d i t i o n s  a re  t h e  d i s c r e t i z e d  
a p p l i c a t i o n s  of e q u a t i o n s  (75) on y = yg = 0 and of e q u a t i o n s  (79)  on 
x = xg, x = xu, y = y u ,  w i t h  t h e  cho ice  o f  whether u o r  v i s  s p e c i f i e d  
on any s e c t i o n  of B depending on t h e  a l g o r i t h m  v e r s i o n  be ing  used. 

A f t e r  t h e  example problem is  so lved  by any v e r s i o n  of t h e  a l g o r i t h m ,  i t  
i s  of i n t e r e s t  t o  de te rmine  u on y = 0 (which approximates  t h e  a i r f o i l -  
s u r f a c e  v e l o c i t y  f o r  -$ < x < $ i n  t h i n - a i r f o i l  t h e o r y ) .  S ince  u on 
y = 0 
f i g u r e  2,  a second-order -accura te  r e p r e s e n t a t i o n  of t h e  r o t a t i o n a l i t y  e q u a t i o n  
can  be  a p p l i e d  on k = 0, wi th  one-sided y d i f f e r e n c i n g ,  analogous t o  equa- 
t i o n  (70) used i n  v e r s i o n s  D and E f o r  k = n l .  The r o t a t i o n a l i t y  e q u a t i o n  
can be a r r anged  t o  o b t a i n  ( r e f .  25):  

i s  n o t  determined d i r e c t l y  i n  t h e  s o l u t i o n s  ob ta ined  on t h e  meshes i n  
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( i n  which u j , ~  i s  t h e  v a l u e  a t  k = 0 r a t h e r  t h a n  a t  k' = 0).  I n  t h i s  
example problem, of cour se ,  o j , o  = 0 i n  equa t ion  (82) .  

U B I C l A  U B I C l B  U B I C l C  
CALCDl CALCD CALCD 

CR2N1 CR2DUV CR2UVC 
GE2N1 GE2N1 GE2N2 

FORTRAN PROGRAMS AND RESULTS FOR THE EXAMPLE PROBLEM 
U S I N G  VERSIONS A TO E OF CAUCHY-RIEMANN SOLVER 

U B I C l D  U B I C l E  
CALCD CALCD 1 GEUVE 

CR2UVC CR2UVE 
GE2N2 

The purposes  of  t h i s  s e c t i o n  are (a )  t o  d e s c r i b e  FORTRAN programs, l i s t e d  
i n  appendices  A t o  E ,  f o r  s o l v i n g  t h e  s imple  example problem o u t l i n e d  i n  t h e  
above s e c t i o n ,  u s i n g  v e r s i o n s  A t o  E of  t h e  Cauchy-Riemann s o l v e r  and (b)  t o  
d e s c r i b e  r e s u l t s  of c a l c u l a t i o n s  f o r  t h e  example problem. 

FORTRAN Program D e s c r i p t i o n s  

The FORTRAN programs are  w r i t t e n  f o r  u s e  on a Con t ro l  Data 7600 com- 
p u t e r .  S l i g h t  m o d i f i c a t i o n s  would be r e q u i r e d  f o r  u se  on most o t h e r  com- 
p u t e r s  t h a t  have FORTRAN compi le rs .  Each program c o n s i s t s  of a main program 
and t h r e e  s u b r o u t i n e s ,  as l i s t e d  i n  t a b l e  11. The l a s t  l e t te r  of  t h e  name of 

TABLE 11.- PROGRAMS AND SUBROUTINES 

t h e  main program deno tes  t h e  v e r s i o n  of t h e  Cauchy-Riemann s o l v e r  used;  t h u s ,  
U B I C l A  i s  t h e  main program t o  s o l v e  t h e  example problem f o r  t h e  biconvex a i r -  
f o i l  u s ing  v e r s i o n  A of t h e  s o l v e r .  The s u b r o u t i n e  CALCD used w i t h  v e r s i o n s  B 
t o  E computes t h e  q u a n t i t i e s  dk ,M (eqs .  (F7) i n  appendix F ) .  The correspond-  
i n g  computat ion i n  v e r s i o n  A is  done by s u b r o u t i n e  CALCD1. The s u b r o u t i n e s  
CR2DUV, C R 2 W C ,  and CR2UVE perform t h e  c y c l i c  r e d u c t i o n  as o u t l i n e d  i n  appen- 
d i x  F f o r  v e r s i o n s  B ,  C ,  D ,  and E .  The s u b r o u t i n e  CR2N1 performs t h e  v e r s i o n  
of c y c l i c  r e d u c t i o n  d e s c r i b e d  i n  r e f e r e n c e  25 f o r  v e r s i o n  A. Within each of 
t h e  s u b r o u t i n e s  f o r  c y c l i c  r e d u c t i o n ,  ano the r  s u b r o u t i n e  i s  c a l l e d  t o  s o l v e  
t r i d i a g o n a l  e q u a t i o n s  u s i n g  t h e  Thomas a l g o r i t h m  (e .g . ,  see r e f .  4 5 )  f o r  
Gaussian e l i m i n a t i o n .  The G l i g h t l y  d i f f e r e n t  s u b r o u t i n e  v e r s i o n s  f o r  t h i s  
a l g o r i t h m  are named GE2Ni, GE2N2, and GEWE. 

The u s e  of t h e s e  p a r t i a l l y  modular forms of t h e  programs, w i t h  s e p a r a t e  
s u b r o u t i n e s  t o  perform major  s t e p s  i n  t h e  program, is  n o t  t h e  most e f f i c i e n t  
b u t  i s  b e s t  f o r  unde r s t and ing ,  modifying,  and adap t ing  t h e  programs. 

Timer- Each main program i n c l u d e s  t h e  use  of a t iming  subprogram from t h e  
CDC-7600 program l i b r a r y  t h a t  r e t u r n s  t h e  CPU t i m e  T i n  seconds  (from t h e  
start  of t h e  j o b )  e i t h e r  by t h e  s t a t emen t  CALL SECOND(T) o r ,  f o r  example, by 
CPU=SECOND(T). Th i s  subprogram i s  used t o  measure t h r e e  t i m e s  i n  each main 
program: T 1  is  t h e  t i m e  f o r  a l l  p r e l i m i n a r y  computat ions,  exc lud ing  i n p u t ,  
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before the cyclic reduction; T2 is the time for the cyclic reduction to be 
completed (determination of V after F is known); and T3 is the time 
required to obtain U after V is known. When the program is used on other 
computers, all statements containing the FORTRAN variables TT1, TT2, T1, T2, 
and T3 should be removed or appropriately replaced. 

FORTRAN parameters and variabzes- Before further description of the pro- 
grams, it is convenient to list in table I11 some FORTRAN parameters and 
variables that either are used frequently or are special and that correspond 
to the indicated equivalent algebraic quantities. For this we note that, 
since FORTRAN does not permit the index zero in an array, the FORTRAN indices 
J and K, for example, are shifted by one from the values of j and k .  The 
variable J may represent either JU or JV in table I11 and the variable K 
may represent either KU or KV in the same sense as are used above 
as indices to represent, respectively, either j or j '  and either k' or k .  

j and k 

Statement functions- At the beginning of each main program, statement 
functions are included to determine X = XJU(J) or XJV(J) and Y = YKU(K) or 
YKV(K) from equations (4) (see table 111). Statement functions are also 
given for the exact analytical solutions for u and V ,  UEX(X,Y) and VEX(X,Y), 
which include within the statements the additional statement functions 
RHO(X,Y) and ANPHI(X,Y). The functions UEX and VEX represent the real and 
imaginary parts of equation (77). In addition, version E contains the state- 
ment functions Fl(JU) and F2(JU), which are arbitrarily specified functions 
to represent a l , j  and a 2 , j ,  respectively, in the test calculation. 

Computation of bounduries- Because of the staggered mesh, in some cases 
X R ,  xu ,  and y u ,  and then it is most convenient to specify nominal values of 

compute final values of those parameters for which convenient mesh intervals, 
hx and hy ,  are obtained. 
and m l  and nl are input, h, and hy are obtained from equations (9d) and 
(9e), then equations (9a) and (9b) or (9c) are used to determine the final 

X R ,  xu ,  and y u ,  taking into account the fact that it is desired to have 
x i  = -0.5 (as given by eq. (4a)) coincide with the leading edge of the airfoil 
at some J = JLE. This computation is done just after the input is read at 
the beginning of each main program. 

For this reason, after the nominal values are input, 

Input- A s  indicated near the beginning of each main program, versions A ,  
By and E each require only one input card per case (READ statement labeled 2 
with corresponding FORMAT statement labeled l), and versions C and D require 
two input cards per case (READ statements labeled 2 and 104 with corresponding 
FORMAT statements labeled 1 and 103). 
input card format f o r  each case requires the following specifications: 

In each program, the f i r s t  (or one onZy) 

NEX Integer in column 5. Specification is arbitrary and superfluous unless 
NX is specified as some integral power of 2 (NX=2**NEX). In the latter 
event, specify NEX equal to log2NX. 

NX Integer, right-justified at column 10: Mesh number for x direction, 
equal to m l .  Specify integer ranging from 4 to 128. (Recommended 
values either have a factor of 10 or are a power of 2; see table I.) 
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I 

TABLE 111.- FORTRAN SYMBOL DEFINITIONS 

FORTRAN 

J U  

J V  

KU 

K v  

NX 

NY 
J M  

KM 

NEY 

XL, xu 
YL,  YU 

XJU(J )  

X J V ( J )  

YKU (K)  

YKV (K) 

Hx'  Hy 

U ( J , K )  

V(J ,K)  

UEX (X,  Y) 

VEX (X Y)  

BETA 

BETA1 

BETA2 

ALPHA1 

ALPHA2 

A 

A 1  

ALFA 

ALFA1 

GAMMA 

DELTA 

ALF (J) 

BET (J) 

GAM(J) 

VT(J )  

UT(J )  
- 

R e f e r e n c e  equation Reference page 

9 

9 

9 

9 

8 

8 ' 9  
8 

9 

9 

6 9 9  

6 '9  

9 

9 

9 

9 

9 

9 

3 1  
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N N  I n t e g e r  i n  column 15. 
(NY = 2**NEY), s p e c i f y  NEY e q u a l  t o  log2NY. 

S ince  NY i s  always a n  i n t e g r a l  power of 2 

NY I n t e g e r ,  r i g h t - j u s t i f i e d  a t  column 20: Mesh number f o r  y d i r e c t i o n ,  
e q u a l  t o  nl. Spec i fy  i n t e g r a l  power of 2 (NY=2**NEY) w i t h  NEY r ang ing  
from 2 t o  7.  

On t h i s  s a m e  ca rd ,  as d e s c r i b e d  i n  t h e  p r e v i o u s  s u b s e c t i o n  ( s e e  t a b l e  I11 f o r  
correspondence between XL and 
XL, XU, YL, and YU. The v a l u e s  have E f i e l d s  of w id th  10 and are  r i g h t -  
j u s t i f i e d ,  r e s p e c t i v e l y ,  i n  columns 30, 40 ,  50,  and 60. Recommended v a l u e s  
f o r  t h e  example problem are, r e s p e c t i v e l y ,  -1.E0, 1.E0, O.EO, and 2.EO. (For 
t h e  example problem as formula ted ,  YL is  always O.EO.) The s a m e  i n p u t  c a r d  
i n  a l l  t h e  program v e r s i o n s  a l s o  r e q u i r e s  s p e c i f i c a t i o n  of t h e  FORTRAN 
parameter  NBC i n  column 65 as fo l lows :  

XR, e t c . ) ,  nominal v a l u e s  are s p e c i f i e d  f o r  

NBC = 1 r e s u l t s  i n  t h e  o u t e r  boundary c o n d i t i o n  be ing  s p e c i f i e d  as t h e  e x a c t  
a n a l y t i c a l  s o l u t i o n ;  

= 2 r e s u l t s  i n  ze ro  v a l u e s  be ing  s p e c i f i e d  f o r  t h e  c o n d i t i o n s  on t h e  
o u t e r  boundar ies .  

I n  a d d i t i o n  t o  t h e  above parameters ,  which are  a l l  s p e c i f i e d  on t h e  f i r s t  
( o r  on ly )  i n p u t  ca rd  f o r  each case, t h e  fo l lowing  parameter  o p t i o n s  apply  as 
i n d i c a t e d :  

LASCAS = 0 causes  t h e  program t o  r e t u r n ,  a f t e r  a case has  been r u n ,  t o  t h e  
f i r s t  READ s t a t emen t  f o r  a new case; 

= 1 causes  t h e  program t o  end; should  b e  s p e c i f i e d  f o r  l a s t  case i n  a 
j o b .  

NUBDRY = 0 i n  program D ,  s p e c i f i e s  o p t i o n  ( a )  (eq.  (61b))  f o r  de t e rmina t ion  
of U j , n l ;  

i n  programs D and E ,  s p e c i f i e s  o p t i o n  (b)  (eq. (66) )  f o r  = 1 U j Y n l ;  

= 2 i n  programs D and E ,  s p e c i f i e s  o p t i o n  ( c )  (eq. (68) )  f o r  ~ j , ~ ~ ;  

= 3 i n  programs D and E ,  s p e c i f i e s  o p t i o n  (d)  (eq. (71) )  f o r  u * 

ALPHAl and ALPHA2 are a r b i t r a r i l y  s p e c i f i e d  numbers i n  programs C and D except  
t h a t ,  t o  keep t h e  d i f f e r e n c e  equa t ions  e l l i p t i c ,  r e q u i r e  both  (-m < E l  < 1 )  
and (-1 < E 2  < m) and,  i n  a d d i t i o n ,  t o  keep t h e  c a l c u l a t i o n  s t a b l e  f o r  t h e  
o p t i o n  NUBDRY = o i n  program D ,  r e q u i r e  a l s o  

3 Ynl' 

I ( 1  + E ~ ) / ( I  - E ~ )  I < 1. 

I n  programs A and B ,  LASCAS is  a n  i n t e g e r  i n  column 70; i n  program E ,  i t  
is  i n  column 75; i n  programs C and D ,  i t  is  i n  column 25 of t h e  second i n p u t  
ca rd  f o r  each case. The i n t e g e r  parameter  NUBDRY is  i n  column 70 of t h e  f i r s t  
i n p u t  c a r d  f o r  each  case i n  programs D and E.  
ALPHA2 f o r  programs C and D are s p e c i f i e d  w i t h  E f i e l d s  o f  w id th  1 0  and are 
r i g h t - j u s t i f i e d ,  r e s p e c t i v e l y ,  a t  columns 1 0  and 20 of  t h e  second i n p u t  ca rd  

The parameters  ALPHAl and 
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I 

for each case. For convenience, table IV summarizes the input card and 
column locations for the input parameters. 

TABLE 1V.- INPUT CARD AND COLUMN LOCATIONS FOR INPUT PARAMETERS 
(Column of right-j ustification) 

Input 
parameter : E z 

u m z cl x s 
____ 

40 

40 

1,40 

1,40 

40 

51 
Version A 

column 

Version B 
column 

Version C 
card, 
column 

Version D 
card, 
column 

Version E 
column 

5 

5 

195 

135 

5 

10 

10 

1,lO 

1,lO 

10 

15 

15 

1,15 

1,15 

15 

20 

20 

1,20 

1,20 

20 

30 

30 

1,30 

1,30 

30 

50 

50 

1,50 

1,50 

50 

60 

60 

1,60 

1,60 

60 

65 

65 

1 , 6 5  

1,65 

65 

70 

70 

2,25 

2,25 

75 

2,lO 

2.10 

2,20 

2,20 1,70 

70 

Note that the arbitrarily specified statement functions F l ( J )  and F 2 ( J )  
determine al,j and a 2 , j  in program E, so these quantities are not input for 
version E; these specifications are easily changed by simply replacing F l ( J )  
and F 2 ( J )  in the main program by suitable statement functions. These speci- 
fications should satisfy (-a < a1,j < 1) and (-1 < “ 2 , j  < m, at all 
(1 G j G m). 

j in 

Outline o f p r o g r m s -  The FORTRAN programs have the following major steps 
(see listings in appendices): 

1. Specify DIMENSION and COMMON statements. 

2. Specify statement-function declarations. 

3 .  Read input as described in above section. 

4 .  Calculate xg and xu (and yu in versions B and C) from the nominal 
input values. 
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5. C a l c u l a t e  needed parameters .  

6 .  

7. 
t o  ( v T ) j  
r i g h t  s i d e  of e q u a t i o n  (81b) f o r  v e r s i o n s  D and E ) .  

C a l c u l a t e  ( v T ) j  

I n i t i a l i z e  i n t e r i o r  v a l u e s  of 
p l u s  t h e  r i g h t  s i d e  of e q u a t i o n  (81a) f o r  v e r s i o n s  B and C ;  t o  t h e  

i n  v e r s i o n s  B and C ( s e e  p.  2 2 ) .  

f j , k  and g j , k  ( t o  ze ro  f o r  v e r s i o n  A; 

8. C a l c u l a t e  needed boundary v a l u e s  of u and v .  

9. C a l c u l a t e  ( u y ) j  i n  v e r s i o n s  D and E .  

10.  Complete t h e  d e t e r m i n a t i o n  of f i , k  and g j , k  by "modifying t h e  
f r i n g e s "  t o  i n c l u d e  t h e  boundary v a l u e s  of 
and g j , k  f o r  each  v e r s i o n ;  e . g . ,  p. 1 9 ) .  

u and v ( s e e  d e f i n i t i o n s  of  f j , k  

11. S e t  a p p r o p r i a t e  boundary v a l u e s  of uj,k and vj,k t o  z e r o  as 
r e q u i r e d  by t h e  r e d u c t i o n  a lgo r i thms .  

12.  Determine each Fj,k (denoted FO i n  t h e  program l i s t i n g s )  accord-  
i n g  t o  equa t ions  ( 3 2 )  as d e s c r i b e d  f o r  each  program v e r s i o n .  

1 3 .  -Determine needed v a l u e s  of  d,,, (eqs.  (F7) )  by c a l l i n g  e i t h e r  CALCD 
o r  CALCD1. 

14.  Determine 6 j  and B 1  (A and A l ;  see t a b l e  I11 above) i n  a l l  v e r s i o n s  
except  E ( i n  which t h e s e  q u a n t i t i e s  are i n  t h e  a r r a y  B E T ( J ) ,  inc luded  under 
s t e p  5 above) .  

15.  Perform c y c l i c  r e d u c t i o n  acco rd ing  t o  t h e  a l g o r i t h m  o u t l i n e d  i n  
appendix F f o r  v e r s i o n s  B t o  E o r  i n  r e f e r e n c e  25 f o r  v e r s i o n  A ( c a l l  sub- 
r o u t i n e  names beginning  w i t h  CR i n  t a b l e  11) t o  o b t a i n  a l l  unknown v a l u e s  of  

vj,k. 

16.  Determine a l l  uj,k by procedure  d e s c r i b e d  p r e v i o u s l y  f o r  each 
v e r s i o n .  

t h a t  w e r e  p r e v i o u s l y  set  j ,k 17.  Reload boundary v a l u e s  of u and v j ,k 
t o  zero .  

18. P r i n t  as o u t p u t ,  f o r  a p p r o p r i a t e  v a l u e s  of j and k :  J ,  K ,  X and Y 
( f o r  U), U, X and Y ( f o r  V), V ,  UEX and VEX e v a l u a t e d  a t  same p o i n t s  as U and 

V,  and ERRU, ERRV, which are t h e  d i f f e r e n c e s  between U and UEX and between V 
and VEX. 

1 9 .  P r i n t  T1 ,  T2, T3.  

20. P r i n t  v a l u e s  of ~ j , ~  c a l c u l a t e d  from e q u a t i o n  (82) a long  w i t h  
v a l u e s  of ~ j , ~  and t h e  e x a c t  s o l u t i o n  f o r  comparison. 
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21. For convenience in plotting the exact solution for u on y = 0 
near the leading- and trailing-edge singularities, also calculate and print 
values at small intervals near these edges. 

Results 

The results of computations for the illustrative example problem of the 
biconvex airfoil include, in particular, plots of the computed values of 
u on y = 0 versus x, compared with the analytical solution, and the comput- 
ing times. 

For this example problem, there is very little difference in the results 
for u on y = 0 computed by the different program versions, A to E, with 
the same input conditions, and for any of the options (a) to (d) in version E. 
The very small differences are virtually indistinguishable on a plot such as 
shown in figure 3, for which the results were computed with NX = 4 0 ,  NY = 32, 
NBC = 1, the nominal values of xk, xu, y k ,  and yu as recommended above, and 
with various values of E 1  and E 2  in versions C and D. For these input 
parameters, the mesh intervals hx and hy 
The outer computation boundaries are at or about 112 chord length upstream 
and downstream from the airfoil edges and 2 chord lengths above the airfoil. 
Because of the discontinuous conditions on v at the airfoil edges, 
(x,y) = (+0 .5 ,0 .0 ) ,  the analytical perturbation solution for u goes to 
negative infinity there. These singularities are captured well by the numer- 
ical algorithms and, even on the relatively coarse mesh used for figure 3, the 
values very near those points are accurate. 

are, respectively, 0.05 and 0.0625, 

Y v on v=o. discrete boundarv 
condhon -2- t on y = o ,  numerical solution 
Y on y = 0. onalyticol boundary 
condition - u on y = o ,  onalyt icol solution 

x 

Figure 3.- Perturbation velocities for thin parabolic-arc biconvex airfoil 
(NX = 40,  NY = 32, exact conditions on boundaries). 

The computing times T1, T2, and T3, as described under the subsection 
Timer," are listed in table V for various meshes and for all program ver- II 

sions A to E. Note that, when used in an iterative calculation such as 
described in the Introduction and the section that follows it, no significant 
part of the time T1 would be done more than once (at the beginning of 
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the program). Thus, since T3 << T2, the only time of real significance for 
practical applications is T2. As one example, we see that the time T2 for the 
cyclic reduction using version C for NX = 40, NY = 32 is 16 msec. In refer- 
ence 37, it was noted that the direct solver for this case required only 
14 msec. The difference is due to the fact that a special tridiagonal- 
solution subroutine that takes advantage of the vector capabilities of the 
CDC-7600 was used for the quoted slightly lower time. (The time saving was 
much more significant when a previous version of the FTN compiler was being 
used, before the FTN 4.4 version indicated in table V became available.) 

TABLE V.- COMPUTING TIMES FOR BICONVEX AIRFOIL USING VARIANTS OF 
CAUCHY-RIEMANN SOLVER ON CDC-7600 

(FTN 4.4, OPT = 2 Compiler) 

Version of 
program 

B 

C 

D 

E 

I 

NX 

10 
20 
40 
60 
100 

10 
20 
40 
60 
100 

10 
20 
40 
60 
100 

10 
20 
40 
60 
100 

10 
20 
40 
60 
100 

NY 
- 

8 
16 
32 
64 
128 

8 
16 
32 
64 
128 

8 
16 
32 
64 
128 

8 
16 
32 
64 
128 

8 
16 
32 
64 
128 

T1, sec 

0.005 
.006 
.009 
.013 
,025 

.OOl 

.002 

.005 

.010 

.025 

.002 
,009 
.032 
.092 
,299 

.002 

.009 

.032 

.092 

.296 

,003 
.009 
.032 
,092 
.299 

T2, sec 

0.001 
.005 
.022 
.076 
.287 

. 001 

.004 

.015 

.056 

.218 

.OOl 

.003 

.016 

.058 

.223 

.OOl 

.003 

.016 

.057 

.223 

,001 
.003 
.018 
.062 
.240 

T3, sec 
_ _  

0 
0 
.OOl 
.004 
.Oll 

0 
0 . 001 
.003 
.OlO 

0 
0 
.OOl 
.003 
.010 

0 . 001 
.001 
.003 
.OlO 

0 
0 
,001 
.003 . 011 
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User's Choice of Algorithm Versions 

To aid the prospective user in selecting which version of the algorithm 
to use, we note the following features: 

Version A: 

solves the nonhomogeneous Cauchy-Riemann equations; 
uses a grid that is nonsymmetrical in both x and y (conditions on u 
imposed on left and top, D on bottom and right); 
has a potential source of errors at the upper boundary due to first-order 
accuracy of the difference equation there; 
is the least efficient of the algorithm versions; 
was used for iterative computations in reference 35. 

Version B: 

solves the nonhomogeneous Cauchy-Riemann equations; 
uses a grid that is nonsymmetrical in both 3: and y (conditions on u 
imposed on left and top, v on bottom and right); 
is the most efficient version for the simplest nonhomogeneous Cauchy- 
Riemann equations with the nonsymmetrical grid. 

Version C: 

solves extended nonhomogeneous Cauchy-Riemann equations, with the extra 
terms having constant coefficients; 
uses a grid that is nonsymmetrical in both x and y (conditions on u 
imposed on left and top, v on bottom and right); 
is the most efficient version with extra terms (constant coefficients) 
and the nonsymmetrical grid; 
was used for iterative computations in references 36 to 38. 

Version D: 

solves extended nonhomogeneous Cauchy-Riemann equations, with the extra 
terms having constant coefficients; 
uses a grid that is symmetrical in y (conditions on u imposed on left, 
2, on top, bottom, and right; 
is the most efficient version with the symmetrical grid. 

Version E: 

solves extended nonhomogeneous Cauchy-Riemann equations, with variable 
coefficients in the extra terms; 
uses a grid that is symmetrical in 9 (conditions on u imposed on left, 
D on top, bottom, and right); 
is the only version presented having variable coefficients in the extra 
terms . 
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CONCLUDING REMARKS 

Revised and extended versions of the original Cauchy-Riemann solver of 
reference 25 have been presented, including detailed derivations of the 
algorithms, as well as descriptions and listings of FORTRAN computer programs. 
These programs are believed to be simple and adaptable enough to be useful to 
nonspecialist users. 

The results of the computations for the simple example problem are 
believed to demonstrate significant efficiency, accuracy, and potential 
utility of the algorithms. 

In addition to the previous applications of the original and the first 
revised and extended Cauchy-Riemann solvers in semidirect iterative methods 
for the simplest transonic-flow calculations that have been described in 
references 35 to 38, it is anticipated that the newest version, version E, 
will be useful for more general applications in transonic-flow calculations, 
including lifting airfoils. The Cauchy-Riemann solvers are sufficiently 
general that further significant applications can also be expected in other 
fluid-dynamical problems, as well as in broader areas of mathematical physics. 
It is expected that further extensions of these methods in the future, to 
include variable meshes and three dimensions, will also be worthwhile. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif. 94035,  December 16, 1976. 
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APPENDIX A 

FORTRAN LISTING OF EXAMPLE PROGRAM AND SUBROUTINES FOR 
ORIGINAL CAUCHY-RIEMANN SOLVER, VERSION A 

4 3  



C 
c+++ 
C 
C 
C 
C 
C 

C 

C 

1 
2 

c 
c 

C+++ 
C 

4 
3 

M A I N  PRDGRAYv l l B I C l A 7 6  FOR C D C  7600 
SOLUTION OF CAUCHY-RIEMANN EQS BY C Y C L I C  RFDUCTIPV FOR I V C n Y ,  FLOW 
OVER T H I N  B ICONVEX A I ? F C I L o  A I R F O I L  CHOP@ IC: FRnM X=-.5 TO +r5. 

THE METHOD AND THE PROGRAM ARE DFSCRIREO I N  NASA Th! D-7934 
BY € 0  0. MARTIN AND Ha LOMAX. 

FCTP = 4 .13 .14159765  
F O R M A T ( 4 1 5 t  4ElOoOt2I5) 
R E A D ( 5 t l )  

T H E  I N P U T  VALUES OF XL ANn XU A R E  NOMINAL VALUFSV USED TO 

NEXINX t NEY TNYIXLIXUIY LTYIJ  t N R r r  L A S C A S  
CALL SECPYD(TT1)  

CPMPUTE THE FXACT VALIIFS. 
HY = (YIJ  - Y L ) / F L f ’ A T ( N Y )  
HX = ( X U  - X L ) / F L 0 4 T ( N X )  
JLF = 1,005 + ( - . 5  - X t ) / H X  
XL = - . 5  - H X * I J L E  - 1) 
JM = 1 + NX 
KM = 1. + NY 
KMPZ = K M  + 2 
BETA = H Y / H X  
RETSO = RFTA**2 
I N I f I A L T Z F  I N T E R I O R  VALUES n F  M A S 5  SrlUQCFS A N D  Vr3RTTCTTY I F  T <  

XU = X L  + H X * ( N X  - 05) 

FQUIV.  T n  V ANI? G IS FOUIV.  f 0  U 1 - s  
DO 3 K = 1 ~ 1 ~ 0  

DO 4 J = 11129 
V ~ J I K )  = 0. 
I ! ( J v K )  = 0 .  

C n N T I N U E  
CON1 I NUC 
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33 

6 
C+++ 

7 

a 

C+++ 

9 

10 
C+++ 

12 
1 1  

c+++ 
C 

16 
15 

C+++ 
C 
C 

45 

I, 



17 

3 4  

18  
19 

20 

2 1  
22 
23 

26 

2 7  

35 
36 

28 

29 

46 



2 5  
24 
3 0  

38 
39 

40 

42 

46 

47 

45 

4 8  

ERRV = V P  - VEXE 
WR I T E (  6 9 2 0 )  J 9 K  9 XA 9 YA * [JA 9 U E  XA 9 EP R U 9 XRI Y R T VS -VEX B T  FPRV 

CONTINUE 
CONTTNUE 
FORMAT(//* Tl=**E12o4** SEC.9 T2=*9E13.41* SEC.9 T ? = * T F I ? . ~ , *  SEC. 

14: 1 
W R I T E  ( 6 7  30 1 T L I T Z T T ~  
FnRMAT( / / / *  V E L O C I T I E S  AT Y = O.*) 
FOPMAT f / / 2 6 X  9 1 CrJ T 6x1 3HX JU 9 1 OX, 1HU 9 1  3 X v 3HlJfX 9 1 1 X  T 3HX J V  9 l o x  9 1HV 9 13x9 

FORMAT ( 7 3 X  9 74 9 F11.6 9 2 E15  07 9 F 11 061 2F 15 7 
WR I TE ( 6 7 38 1 
W R I T E ( 6 9 3 9  1 
00 42 J = 2 r N X  

13HVEX/ / )  

XA = X J U ( J )  
XI3 = X J V ( J )  
UEXA = 00 
VEXR = 0 .  
I F  ( ARS( XA*XA-. 25 1 .GE. 1.F--5 1 UFXA = I J E X ( X A T  0. 

VR = V I J T ~ I  
U A  = O o 1 2 5 * ( 9 . * U (  Jr2)-U( J , 3 ) + 3 o * R F T 4 * f V ( J l l  ) - V ( J + I *  1) 1 )  
WR I T  F ( 49 40) 

IF I XR*XR -LE 75001 t VEXR = -4o*XR 

J 9 XA T IJA 9 \!E XA 9 XR 9 V R  9 VFXB 
C n N T I N U E  
WR T TE ( 6-45 1 
D F L T X  = o l * H X  
x = -05  - l . l *HX 
N = O  
N = N + 1  
I F  ( N 0 F Q . 2 )  X = - 5  - 1.1*HX 
W R I  TE I 6  9 2 3  1 
150 47 1 = 1 - 2 1  

X = X + DELTX 
IJFX1 = 0 .  
V E X l  = 0. 
I F  ( A A S ( X * X - , 2 5 I o ~ E . l o E - 5 )  U F X l  = UFX(XIO.) 
I F  ( X * X o L F o . 2 5 0 0 1 )  V E X l  = -4.*X 
WRIT  E (6 I 48 1 X V U  EX 1 T V F X l  

CQNTT NIJE 
I F  (N.EQ.11 GO Tfl 46 
F O R V A T ( / / *  EXACT V E L P C I T T F S  AT E O G E S . * / / ? Q X *  l H X I  11X13l’U’X* 12x1 3HVE 

1 X) 
FORMAT (23x1 F 1 0 . 6 9  2F15.7) 
IF ILASCAS.EO.0) G!l T O  2 
$TOP 
EN 0 

SURROUJT NE ChL.CO1 ( N E V I  
C D I Y E N S I O N S  O F  O ( L 9 M I  ARE LMAX = NEV AND M M & X  = 2**LMAX. 

D I M E N S I O N  0179128) 
COMMON /DC/ 0 
LMAX = NEY 
D ( L 9 1 )  = SQRT(2.) 
D ( l r 2 )  = - D ( l r l l  
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C+++ 
c 
C 

~ U f ? ~ f l ! J T I N E  C R Z N l  
POLITTNF TO SOLVE RY C Y C L I C  RE@!JCTION A BLfltK-TRIOTAGONAL 
M A T R I X  EQUATTDN W I T H  A NFIJMANN-LJKE CfWll7ITIflN IN 2 DTMENS?flNS, 

c 

C+++ 

2 

3 
1 

JM = 1 + NX 
Y M  = 1 + N Y  
LMAX = h!FY 
FDRWAQD RFCURSIPN--CIRST LFVEL I S  L = I .  
KH = K Y  
EPC. = 1, 
30 1 K = 3 r K H . 2  

Do Z J = 7 T N X  
V I J t K )  = 7 o * V ( J , K I  

C V N T  ?N!JF 
ALFA1 = A 1  
ALFA = A 
CALL GF7N1 
IF (K.EO.KM) F D f  = 0. 
p? 3 J = 2 t Y X  

V(J,K) = V t J r K )  + V(J ,K -1 )  + E P S * V ( J t K + l )  
C@Nr IN lJF  

CCINTI NUE 
Do 4 L = 2vLMAX 

WH1 = 2**(1.-2) 
YH2 = 2*NH1 
NH3 = 7 * N H 1  
YH4 = 4 * N H 1  
K L  = NH4 + 1 
KH = K M  
I F P S  = 1 
DO 5 K = K L t K H v Y H 4  

I F  (Y.E(J.KY) I F P F  = 0 
FPS = F L n A T (  TEPS 1 
K l l  = K - N H l  
K 1 2  = K + NHl+IEPS 
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K 2 1  = K - NH2 
K 2 2  = K + NH2+TFPS 
K 3 1  = K - NH3 
K 3 2  = K + NH3* IEPS 
DO 6 J = 2 r N X  

D U M ( J )  = V ( J T K )  
V{ JTK) = ~ . * V ( J T K ) - V ( J T K ~ ~ ) + V ( J T K ? ~ ) - V ~ J T K ~ ~ ~  

1 +E P S* 1 -V(  J 7 K 12) + V( J r K 2 2  ) -V(  J T K 3 2  
6 CONTINUE 

DO 7 M = l r N H 2  
A L F A l  = A 1  + D ( L - L v M )  
ALFA = A + C?!(L-frM) 
CALL  G E Z N l  

7 CON1 I N U E  
Dl3 8 J = 2 r N X  

V ( J 9 K )  = V ( J 9 K )  + D U M I J )  - V t J r K l l )  + V ( J r K Z 1 )  + EPS*( -V(J r  
1 K 1 2 )  + V ( J r K 2 2 ) )  

8 
5 
4 

t 
C+++ 

9 

10  

11 

14 

CONTINI IE  
C P N I  INUE 

C ONT I NU€ 

RACKWARD R E C U R S I O N - -  D E F T N f  NEW I N n E X v  L E  = L M A X - L + l  = NEY-L+1* 
L = LMAX 
K = KM 
N H 2  = 2 * * ( L - l l  
NH4 = 2*NH2 
K 2 1  = K-WH2 
DO 9 J = 2 r N X  

D U M ( J )  = V I J T K )  
T.T)NII NUE 
Dn io M = i r ~ ~ 4  

A L F A l  = A 1  + D ( L v M )  
ALFA = A + D l L r M l  
CALL G E 2 N l  

CDNTTNUF 
00 1 1  J = 2 r N X  

V ( J p K < )  = 2 * V ( J r K )  + D U M ( J )  - V ( J v K 2 1 )  
C'ONTTNUE 
Dfl  1 2  L R  = ZrLMAX 

L = LMAX - L R  + 1 
MH2 = 2 * * ( L - l !  
NH4 = 2*NH2 
YL = NH4 + 1 
KH = KM - N H 4  
K I  = 2*NH4 
On 13 K = K L ~ K H T K I  

K 2 1  = K - N H 2  
K 2 2  = K + NH2 
K 4 1  = K - N H 4  
K 4 9  = K + NH4 
D O  14 J = 2 t N X  

DUM( J 1 = V(  J p K l  
V ( J 9 K )  = V (  J v K )  + V ( J v K 4 2 )  + V ( J v K 4 2 )  

CONTTNIJE 
DO 1 5  Y = t r N H 4  

A L F A l  = A 1  + D ( L 9 M )  
ALFA = A + D f L v M )  
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CALL G E Z N l  

Dr! 16 J = 2 r M X  
15 CO NT I NU F 

V I J I K )  = V ( J 1 K )  + .S* IDUMIJ )  - V ( J r K 7 1 )  - V ( J q K 2 2 ) )  
16 C f lVT1 &I IJE 
13 CnNT TNUE 
1 2  CONTINUE 

DO 17 K = 2rN",Z 
Dr! 1 8  J = 7 r N X  

V(J,K) = V ( J 9 K )  + V I J , I < - l l  + V I J , K + l )  
18  C P Y T I Y U E  

A L F A 1  = A 1  
ALFA = A 
CALL G C Z N l  

1 7  CnNTINUE 
RE TUF N 
EN D 

t +++ 
C 
c 
C 
I: 

C 

P 
c 

2 

S 1 J R R 0 I J T 1 PJ E C E2 N 1 
ROlJTTh!E TI3 SOLVF BY GAI lSq lAF I  F L T Y I N A T I C N  T H E  T R I O I A G .  FO., 
TI -RETSO,A~FA, -BETSQ)*V  = F (WITH THE C T p S T  PIbC,. FLEMENT DEPLACFP 
B Y  A b F A l ) ,  WHFPE V ANT: F AQF 2-DIMFNFIONAL.  
I N  THE PROGR4Mp V AMO F ARC EQUIVALENT. 
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APPENDIX B 

FORTRAN LISTING OF EXAMPLE PROGRAM AND SUBROUTINES FOR FIRST 
REVISED CAUCHY-RIEMANN SOLVER, VERSION B 
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C 
C+++ 
C 
C 
C 
c 
C 
C 

C 

C 

1 
2 

c 
c, 

c 

103 
101 

C + + +  
C 

4 
3 

r ++++ 
c. 
t 

MA I N  PR'?GRAM, 0 R I C  1R76 W f R  CDC 7600 
SOLUTI f lN  O F  TAUtHY-? IFYANN FQS. FOR TNTflPoQ. FLOW n V F P  Tt rTN R ? C f l N V  
A I R F O I L  USING V F R S I O N  U OF CAUCHY-FIEMANhJ SOLVER. 
A I R F O I L  THPRD IS FROM X=-.S TO + e 5 0  

THE METHOD A N D  THE PROGRAM ARE DESCPIRFD I N  NbSA TN D-7934 
BY E. Do M A R T I N  AMP H. LOWAX. 

52 



5 

3 3  

6 
C+++ 

7 

8 
C+++ 

9 

LO 
C+++ 

12 
11 

C+++ 
C 

16 
15 
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t+++ 
C 
C 

17 

3 4  

1 8  
19 

2 0  

2 1  
22 
23 

26 

27 

54 



3 5  
36 

28 

25 
24 
30 

3 8  
39 

4Q 

4 2  

46 

47 

45 

4R 
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SURPOUTTNE CALCDINEY)  
t DIMENSTONS OF D ( L r ' M )  49E LMAXZNEY-1 AND MMAX= 2**LMAX. 

DTMENSION D(6r64) 
tflMMON/DC/D 
LMPX = NEY - 1 
D f l t l )  = S Q R T ( 2 - 1  

DO 30 L = 2 r L M A X  
D ( l r 2 )  = - D ( 1 7 1 )  

MMAX = 2**L 
W A X H  = YMAX/Z 
MMAXHL = MMAXH + 1 
DP 10 M = 1 r Y Y A X H  

D ( L r M )  = SQQT(2-+  O ( L - l r M ) )  
10 COK" TNUF 

nfl 2 0  M = M M A X H l r M M A X  
MM = M - MMAXY 
D ( L r Y I  = - O ( L r M M )  

7 0  CONTINUE 
3 0  CONTINU!! 

RETtJRh! 
END 

t 
C 
t 

SCIRPflUTINF CR ZOllV 
PflI.IT?NE TO S n L V E  BY C Y C L I C  REDUCTION A BLOCK-TRlDIAGONAC EQUATION 
FOR USE I N  l J R T C 1 R .  

D I M E N S I O N  V I 1 2 9 , 1 3 0 1 r D ( 6 r 6 4  )rOUM(1291 
COMMDN N F X ~ N X ~ N E Y ~ N Y ~ R E T S O ~ A ~ A ~ T A L F A ~ A L F A ~ ~ K * V / D C / D  

C 

c+++ 

2 

3 
1 

JFC = 1 + NX 
KM = 1 + NY 
L M A X  = NEY - 1 
FORWARD PECURSIDN--F lXST LEVEL TS L = l -  
KH = N Y  - 1 
Dn 1 K = 3rKH.2 

DO 2 J = 21NX 
V ( J r K )  = 2 . * V I J v K )  

CnNT 1NI.E 
A L F A 1  = A 1  
ALFA = A 
CALL G E 2 N l  
Dn 3 J = 2TNX 

V ( J r K )  = V I J r K 1  + V ( J r K - 1 )  + V ( J r K + l )  
C ClNT I Nt E 

CDNTlNUE 
DO 4 L = 2 , L M A X  

M H l  = 2**(L-2) 
NH2 = 2*NH1 
NH3 = 3*NH1 
NH4 = 4*hlH1 
KL. = NH4 + 1 
KH = KM - NH4 
DO 5 K = K L r K H r N H 4  

K 1 1  = K - N H l  
K L 2  = K + NHY 
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6 

7 

8 
5 
4 

C 
C+++ 

14 

15 

16 
13 
1 2  

18  

17 

1 

BACKWAR? RECIJRSTON-- DErTNF NcW TNnEXt  L R  = LMdX-L+L  = NFY-L. 
DD 12 LR = 1 r L M A X  

L = NEV - L B  
NH2 = 2**(L-1)  
NH4 = P N H ?  
K L  = NH4 + 1 

K I  = 2*NH4 
KH = KM - NH4 

nr? 13 K = KLTKHIKI 
K 2 1  = K - NFi7 
K 2 2  = K + N H 2  
K 4 1  = K - YH4 
K 4 2  = K + NH4 
I)o 1 4  J = Z r N X  

DUM(J)  = V ( J T K )  
V ( J , K I  = V ( J T K I  + V 

CONT INlJF 
D n  15  Y = I r h ' H 4  

A L F A l  = A 1  + ~ ( L T M I  
ALFA = A + O ( L r ' 4 )  
CALL C r 2 N 1  

CDNf IMlJE 
DO 16 J = 2 a N X  

i K 4 1 )  + V i Y 4 2  1 

V ( J 9 K )  = V f J q K )  + . 5 * ( O U Y I J )  - V ( J T Y ~ L I  - v ( J ~ K ? 2 ) 1  
C O W  I N U F  

CnNT INUE 
C 9 N  TT N UE 
00 17 K = 2 r N Y ~ 2  

Drl  1 8  J = 2 r N X  
V ( J 9 K )  = V I J r K 1  + V ( J v K - 1 )  + V ( J * K + l )  

C@NT INUE 
A L F A l  = A t  
ALFA = A 
CALL GF2N1 

CnNTINUE 
RETIJRN 
END 
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c+++ 
c 
c 
t 
C 

C 

1 
c 

? 
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APPENDIX C 

FORTRAN LISTING OF EXAMPLE PROGRAM AND SUBROUTINES FOR FIRST 
REVISED AND EXTENDED CAUCHY-RIEMANN SOLVER, VERSION C 
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C M A I N  PROGRAM, IJBTClC FOR CDC 7600 
t+++ SOLUTION OF CAUCHY-RIEMANN €OS.  F(?R INCOMPP.. FLOW BVER T H I N  B I C n N V  
C A I R F Q T L  USIWG VERSION C OF CAUCHY-RIEMANN Sf lLVER ( W I T H  EXTRA TERMS 
C A I R F O I L  CHDRO IS FROM X r - 0 5  TO +e50 
C 
C THE MFTHOD AND THE P R C G R A Y  APE D F S C R I B E D  I N  NASA TN D-7934 
C BY E o  De M A R T I N  LND H. L O M A X o  
C 

D I M E Y S T O N  U t  1 2 9 ~ 1 2 9 ) ~ V l 1 2 9 r 1 3 0 I  rVf(LZ9I 
C O Y K I N  N F X T N X * N E Y * N Y ~ R F T S Q I A I A Z I A ~ F A I A L F A ~ ~ K I V  
C 0 YMflN /C DE F / G  AMM A 9 OELT A 9 GD 9 DELT A T 

f 

C 

1 
2 
1 0 3  
104 

r: 
C 

1 0 7  
101 

C +++ 
r 

FCTR = 4./3-14159265 
FORMAT ( 41 5 1 4 F  10 0 t I 5 1 
READ(5 9 1  

F D R Y A T ( 2 E l O .  0, I5 1 
P F A D ( 5 9 1 0 3 )  ALPHALTALPHAZTLASCAS 

THE I N P U T  VALUES OF XLIXUI AND Y t l  APE NOMINAL VALUES, USFD TO 
CUMPUTF THF EXACT VALUES- 
HY = (YU - V L )  / F L O A T ( Y Y )  

HX = (XU - X L ) / F L O A T ( N X )  
J L E  = 1.005 + 1-.5 - X L ) / H X  
XL = - . 5  - H X * l  J L E  - l I 
XU = XL + HX*(NX - - 5 )  
J M  = 1 + NX 
KM = 1 + NY 
NYP? = NY + 2 
EFTA = HY/HX 
R E T S Q  = %FTA**2  
B E T A 1  = B E T A * ( l .  - ALPHA11 
BETA2 = R t t A * ( l .  + ALPHA21 
PFTA? =-RET AeALPHA1 
R E  TA4 =-BET 4* A L W  A2 
GAMMA = -RFTA*BETA? 
DELTA = -RETA*BETA l  
GI7 = G A M M A / D E L T A  
O E L T A I  = l . / O E L T A  
C A L t l f L A T F  V = V I ( J )  4T K=NY, 
Y = Y K V t N Y )  

hlEXvNX rNEY ,NY T X L * X U * Y L T Y I J * N R C  

CALL SECUND (TT  1)  

YiJ = YL + HY* (NY - 0 5 )  

DO 101 J = 2VNX 
X = X d V f J )  
TF (NBC.EQ.2) G O  TD 102 
V T ( J )  = V E X f X p Y )  
Gn TD 101 
V T ( J )  = 0. 

CONTT NVE 
I N T T I A L I Z E  TNTERIOR VALUES GF MASS SOUPKFS AND VORTICTTY ( F  I S  
EOUTV. T O  V AND G I S  E O U I V o  TO U)-- 

60 



4 
3 

C++++ 
c 
,. 
a 

5 

3 3  

6 
C+++ 

7 

8 
C+++ 

9 

L O  
C+++ 

12 
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26 

27 

35 
3 6  

28 

29 

2 5  
74 
30 

78 
39 

40 

47 

46 
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IF !X*X,LE..25001) V E X 1  -4.*X 
W'?TTF(6*481 X ~ U F X L I V ' X ~  

47 C O N T I N U E  
IF t N . E Q . 1 )  GO T f l  46 

45 FPRMAT( / / *  EXACT V f L n C T T T E t  AT EDGcS-* / /Z9X *1HX r l l X  r 3 H J E X v  12x7 3 P V E  

48 F O R Y A T ( Z ~ X I F I O . ~ ~ Z E L ~ . ~ )  
1 x 1  

IF I L A ~ C A ~ . E O . O )  G I ~  m z 
STflP 
END 

SURROUTIYE CRZUVC. 
C ROUTINE TO SCLVE RY C Y C L I C  QFDUST InN A SLnrK-TQTDTbCONAL FOlJ4TT@N 
C FOR U S E  I N  U B I C l C .  
C 

D T M f N S I O h l  V ( 1 2 9 r 1 3 0 )  *@(6964 ) r D l l M t 1 2 9 )  
COMMON N E X , N X I N F Y ~ N Y * R E T S O , ~ ~ A ~ * A L F A * A L ~ ~ ~ * K ~ V / ~ ~ / ~  

C 
JM = 1 + N X  
Kk? = 1 + Y Y  
LMAX = NEY - 1 

K H  = NY - 1 
C+++ F(39WAPD RFCURSION--FTRST L E V E L  T f  C = l .  

on 1 K = 3rKH92 
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no 2 J = 2 r N X  
V I J V K )  = Z - * V f J r K )  

2 CONT I N t E  
ALFA1 = A 1  
ALFA = A 
CALL GE2F12 
Dn 3 J = 2rNX 

V(J ,K )  = V ( J , K )  + V ( J r K - 1 )  + V ( J V K + l )  
3 CONTTNUE 
1 CflNT I tJF 

DO 4 L 2 r L M A X  
NH1 = 2 * * ( L - 2 )  
NH2 = ?*?!HI 
NH3 = 3 * N H l  
Nt44 = 4 * N H l  
K L  = NH4 + 1 
KH = KM - NH4 
D r j  5 K = KL IKHINH~ 

K 1 1  = K - N H 1  
K 1 2  = K + NH1 
K 2 1  = K - NH7 
K 3 2  = K + NH3 
K 3 1  = K - NH3 
K 3 2  = K + NH3 
Dn 6 J = 2rNX 

DUM! J )  = V I  JIK) 
V (  J,K) = 2.*V( J , K ) - V (  J r K l  L ) + V (  J ~ K 2 1 1 - V (  J T K ~ L  1 

-v ( J 9 K 12 1 +V ( J T K 2 2 1-V ( J 9 K 3 2 1 1 
6 C. ONTT NUE 

7 M = 19NH2 
4LFA1 = A 1  + D(L-19M)  
ALFA = A + D f L - l r M )  
CALL GF?N2 

7 C nNTT VUE 
Dr 8 J = 2 r N X  

V I J v K )  = V ( J q K )  + nLJM(J) - V ( J I K 1 1 )  + V ( J v K Z 1 )  
t K l ? )  + V ( J 9 Y 2 2 )  

8 CClNT I N U E  
5 CnNT INtIF 
4 C O N T l  NIJF 

C 
C+++ SACKWARD R F C I J R S T O N - -  O E F T N E  NEW TNDFXI LR = LYAX-L+l  = NFY-L -  

Dn 1 2  LR = 1vLYAX 
L = NFY - LR 
NWZ = 2**(L-11 
N H 4  = 2*NH2 
K L  = NH4, + 1 
KH = KM - N H 4  
KT = 2*NH4 
Of! 1 3  K = KLvKt-rrYT 

K 2 1  = K - N H Z  
K 2 2  = K + N H 2  
K 4 1  = K - NH4 
K 4 2  = K + NH4 
DD 14 J = 2rWX 

DUM( J1 = V f  J,K) 
V I J q K )  = V ( J * K )  + V ( J v K 4 1 1  + V ( J v K 4 2 1  

14 C O N 1  IN IJF  

- V (  J T 
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c++4 
t 
c 
c 
c 

SUBROUTINE GF2N2 
Qr)(JTTYE TD SOLVE RY GAIJSqIAN FLTYINATION THE TFTDTAG. EQ.9 

- f  G A M M A 9  ALFA,DELTA)*V=F (RIIT WITH THE FIRST DI AGeFLEMENT REPLACED 
R V  ALFA119 WHFRE V &ND F A P F  2-DIM€NSTnMAL. 
I N  ?HE PROGRAM, V AND F b P E  EOUTVbLEYT. 
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APPENDIX D 

FORTRAN LISTING OF EXAMPLE PROGRAM AND SUBROUTINES FOR SECOND 
REVISED AND EXTENDED CAUCHY-RIEMANN SOLVER, VERSION D 
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C 
c +++ 
C 
C 
t 
t 
t 
c 
C 

C 

C 

1 
2 
103  
1 0 4  

C 
C 

C +++ 
C 

M A I N  PROGRAM? IJBTCID FOR CDC 7600 
SOLUTION 3 F  CAUCHY-PIFMANN EQS,  Ffl9 I N C O M ’ J R .  FLOW n V E R  THTN B ! t f l N V  
A I R F O I L  IJSTNG VEPSIOM D OF CAUCHY-RIFMANN SCILVFP. ( W I T H  FXTRA T E R M S  
CONTAT NT NG CONSTdNT COFFFS. 1. 
A I R F O I L  CHDQO IS FRnM X z - 0 5  TO +.5 .  

THE YETPOD ANP THE PRflCRA” ARE I I E S C P I B E P  ThJ NAS4 TM D-7934 
RY E-  0. M A R T I N  AND H I  LOMAX. 

F t  T Q  = 4 . / 3 . 1 4 1 5 9 2 6 5  
FORMAT ( 4 1 5 9  4ELO.072 1 5 )  
RE AD ( 5 9 1 1 
F O R M A T ( 2 F 1 0 . 0 ~ 1 5 )  
R E A 9  ( 5  9 103 1 

W E  INP[JT VALUES nF X L  AND XU A P F  N P Y I N A L  VALlJESrUSET) Tn 
COMPUTE THE EXACT VALUES. 
HX = f XtJ - Y L ) / F L Q A T f N X )  

XL = -.5 - H X * ( J L €  - 1 )  
XU = XL  + HX+(NX - - 5 )  
HY = I Y I J  - Y L ) / F L @ A T I Y Y )  
JM = 1 + NX 
KM = 1 + N Y  
NYP7 = NY + 2 
BETA = HY/HX 
RETSCI = BFTA**2  

BETA2 = R F T A * ( l .  + ALPHA21 
BETA3 = -BET4*ALPH41  
RETA4 =-BETA*ALPHA2 
GAMMA = -BFTA*B€TAZ 
DELTA = -BETA*BETA l  
GD = GAMMA/DELTA 
O E L T A I  = l./r)EL?A 
B E T A L I  = l . / B E T A l  
T N I T X A L I Z F  TNTERTOR VALIJES OF MAZS ST31JRCFS 4ND V O P T I C I T Y  ( F  TS 

NE X 9 NX 9 NlFY T NY T x L xu 9 Y L T Y l  I 9 N Bc T NU f3 DeY 

AL PHA IT 4LoHA 21 LA SC A S 
CALL S F C n N D ( T T 1 )  

J L F  = 1.005 + ( - 0 5  - YL ) / H X  

BETA1 = R E T A * f l .  - ALPHA11 

EQUZV. T O  V FXCFPT AT K = KM AND G T S  FO!IIVo Tn  U ) - -  
D n  3 K = Z ~ N Y  

Y = YKU(K1  
x1 = XL 
lJFX1 = U E X ( X 1  r Y )  
DO 4 J = 2rNX 

X = X J U ( J )  
IJEXX = UEX(X,Y) 
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4 
3 

10s 
C++++ 
C 
C 

5 

l l R  
117 
116 

3 3  

6 
C+++ 

7 

8 

I J ( J * K I  = 0 .  
V f J T K I  = RFTA3WJEXX + RFTA4* f lF :X l  
X l  = x 
[ J F X l  = lJEXX 

CONT I NUF 
CnNTINIJE 
Y = YKUtKM)  
x1 = XL 
l JFX1  =IJFX( X l r Y )  
DO 105 J = 2rNX 

X = X J r J t J )  
IJFXX = U E X I X I Y )  
F K M I  J 1 = BFTA3*I IEXX + R E T A 4 W J F X l  
U ( J 9 K Y )  = 00 
x 1  = x 
U E X l  = UEXX 

t OYTT N(JF 
CALC RllLlFJDARY VALUES TlF [.J AND V-- 

FROM b TQFnT L. 
I F  WRC IS 1 9  C 4 L t  FX4CT U AND V; I F  N R C  ! S  2 9  CALC l l=O AND V=O F A R  

@Cl E J = 2rJM 
V R I J )  = 0. 
X = X J V ( J )  
I F  IX*X.LE..%FOOl) V R ( J ) =  -4.*X 
IF IABS(X*X- .25 )oLT . I .F -5 )  V B ( J )  = o 5 * V R ( J )  
T F  (NP.f.EQ.1) V T ( J )  = V E X ( X * Y I I )  
I' INBCoETS-2) V ' (J )  = 0 0  

CONT 1 NlJF 

Y = YKUIKM)  

D n  117 J = 2,NX 

IF INUR'7RYoEO.O) GO TC) 116 

IF (NURC)*VoGT.l) Y = Y1J 

I F  (rYRC.FQ.2) GI3 TO 118 
X = XJIJ(J) 

Gn TO 117 
U T I J )  = 0, 

I J T ( J )  = U E X I X r Y  1 

C f l N T I N U F  
t ONT? NUE 
DP 6 K = 29KM 

I F  (NBC.EQ.2) GO T O  3 3  
1JLIK)  = l J F X ( X L * Y K U ( K )  
V S I K 1  = V F X I X U r Y K V I K )  1 
G n  T O  6 
I JC IK)  = 0. 
V R ( K )  = 0 ,  

CONTZNUE 
MODIFY FRINGE< OF I N T E R I O R  TO XNCLUDF RnlINnARY VALUES-- 
DO 7 J = 2 r N X  

V ( J r 2 )  = V ( J r 2 )  + V R I J )  
F K M I J )  = FKM(J )  - V T ( J 1  
V I J r K M )  = F K Y I J )  

CflNTT NUE 
Dfl 8 K = 2 r N Y  

V I 2 r K )  = V f 2 r K )  + R F T A 2 " I J L I K I  
U ( N X * K I  = U I N X * K )  + AETA*VR(K)  

C nNT I h!U E 
F K H ( 2 )  = F K M f 2 )  .+ RETA2* I IL IKM)  
V17.rKM) = F K M I Z I  
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c+++ 

10 
C+++ 

1 2  
11 

C+++ 

9 

C+++ 
c 

106 

110 
121 

124 

1 2 2  

125 

123 

1 2 6  

120 

16 
1 5  

ZEQCI APPROPRIATE RffUNDARY VALUES ON L E F T  A V O  RIGHT-- 
00 10 K = 1 v K M  

V I J H T K )  = 0 .  
U ( l * K )  = 0- 
V I l v K )  = O m  

CONTTNlJE 
NEXT DETERMINF VFCTOR FO (FQUIV.  TO V), 
I30 11 K = 29NY 

niY 1 2  J = 2,NX 
V ( J v K )  = V f J I K I  - V ( J t K + l )  + R E T A ~ * U ( J T K )  - B F T A Z * U I J - l r K )  

CPfilTThlUE 
CONT I NlJF 
Z E R O  APPROPPTATF BDtIblDARY VALUES ON TClP AND ROTTOM, 
nn 9 J = ~ . J M  

V ( J 9 K M )  = 0 .  
V ( J v I . 1  = 0. 

CPNTI N IF 
CALL  CALCD f NJEY 1 
0 1  = 2 ,  + R E T A * P E T A l  
A = A 1  + RSfA*RETA2 
T T 2  = T T 1  
T 1  = SECnYD(TT1)  - T T 2  
C4LL. CRZUVC 
T T 2  = TT1 
T2 = T F C W D ( ' T 1 )  - i T 2  
NOW V IS DETERYINEO FQR J = 2 T O  NX ANT! K = 2 TO hlY. 
NFXT DFTERMINE U FOR ALL J AND K O  

I F  [ F J I J S D P Y . Y C . O )  Gn Tn 119 
DO 106 J = 7 r N X  

c n w  I NUE 
GO Tn 120 
CO 7P I 1 2 1  9 1 3 7 9 1 2 3 )  NUBDRY 
Dn 1 2 4  J = ZvNX 

U ( J v K M )  = R E T A ~ T ~ ~ R E T ~ ~ * ~ J ( J - ~ T K M )  + V ( J T N Y )  + F K M f J ) )  

U( J T K Y )  = I F I J )  
CO NT 1N IJF 
GO TO 1 2 0  
PETP5 = ,5*RETA 
V f l  125 J = 29NX 

I I ( J , K Y )  = t J T { J )  + S V A S * ( V T ( J )  - V T ( J + l ) )  
C r)N N UF 
GO 'r! 1 2 0  
B F T A 6  = .125*PRETA 
B F I A 7  = ?.*BETA6 
V t J M r N Y )  = V R I N Y )  
D n  1 2 6  J = 2 r N X  

U (J, KM = UT(  J ) +BETA7*( V T I  J)  - V I (  J + Z  1 )+RETAh*  V (  JT NY 1-V ( J + 1 v N Y )  
CONTTMUF 

CCIYTTNIJF 
V I J Y p N Y )  = 0- 

00 15 KR = Z,NY 
K = NYP2 - KB 
Dr! 1 6  J = 2vNX 

U ( J v K )  = I J ( J * K + l )  - I J ( J 9 K )  + B F T A * ( V I J T K )  - V ~ J + ~ T K ) )  
CnNT I Y UE 

C O W  I N U E  
TTZ = T T l  
73  = s E c m D ( T T i )  - ~ 7 2  
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C+++ 
c 
C 

17 

18 
19 

20 

2 1  
2 2  
2 3  

2 6  

27 

7 1  



35 
3 6  

28 

29 

25 
2 4  
3 0  

7R 
33 

40 

43  

46 

47 

45 

4 8  

72 



f!lRsllIJTTF:E C A L C n (  h ' tY  1 
C DIMENSTONS OF I ) ( L * M )  ARF LYAXZNEY-1 AND M M A X =  2 * * L M A X .  

DI MF NST flN 
t DMYnbl /DC / D 
L M A X  = NFY - 1 
D ( l t 1 1  = S O R T ( 2 . )  
D ( l . 2 )  = - n c r * 1 ,  
DD '30 L = 2 r L M A X  

MYAX = 2 * * L  
YMAXH = MMAX/Z 
PMAXH1 = MMAXH + 1 

0 ( 6 r 64 1 

DO 10 M = l t H M A X H  
Q ( L * Y )  = SQRT f2.+ O ( L - l * M ) )  

10 C nNTT NIJE 
DO 21) M = MMAXHItMMAX 

MM = M - MYAXH 
D ( L r M )  = - 0 t L t Y M )  

20 CONT INUE 
30  CONTINUF 

PETURN 
E MD 

t 
C 
C 

C 

t+++ 

2 

3 
1 

SIJRROUTI NE C 42UVC 
R 9 U T I N F  T f l  SOLVF RY CYCLTC REDIJCTTflN A PLOCK-TRTDIAGONAL E Q U A T I n N  
FOR U S E  TN I J B I C l C o  

D T M E N S I f l N  V ( 1 2 9 . 1 3 0 )  r D ( 6 9 6 4  ) r D I I M ( 1 2 9 )  
C 0 Y w 1 7 N  h'EX r hi X I N ~ Y  r NY t R FTSO 9 A 9 A 1  t 4LFAv ALF A 1  t Y 9 V / D C / n  

J M  = 1 + NX 
K M  = 1 + NY 
L M A X  = N'Y - 1 
IF (NYeE0.3 )  G'Y TO 2 0  
FCIQWA"? RECtJPzIf lN--FTQq" LEVEL 1 9  1=1. 
KH = NY - 1 
D'Y 1 K = 3 r K t 4 1 7  

m z J = Z * N X  
V 1 J t K )  = 2 . * V ( J * K )  

CONTINUE 
A L F 4 1  = A 1  
ALFA = A 
CALL  GE2NZ 
Or! 3 J = 2 r N X  

V ( J t K )  = V ( J r K )  + V I J r K - 1 )  + V t J  * K + l )  
C D N T I  NUE 

CON7 I N U F  
IF (NY.EQ.4) GO TD 2 1  
DT! 4 L = 2 r L M A X  

WHl = 2**(L-2)  
NH2 = 2 * N H l  
NH3 = 3 * N H l  
NH4 = 4 * N H 1  

73  



7 

8 
5 
4 
? I  

!- 

.:" . >  

16 
13 
17 
70 

18 

7 4  



A L F A 1  = A 1  
ALFA = A 
CALL GF7N.Z 

17 CT!MT I P ! \ J F  
R E  T U R N  
END 

c+++ 
c 
C 
C 
C 

1 
c 

2 
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APPENDIX E 

FORTRAN LISTING OF E W L E  PROGRAM AND SUBROUTINES FOR SECOND 
REVISED AND EXTENDED CAUCHY-RIEMA” SOLVER (VARIABLE COEFFICIENTS), 

VERSION E 

76 



C 
c ++* 
c 
C 
C 
C 
C 
C 
C 

C 

C 

1 
2 

C 
r 

127 
C++* 
C 

M A I N  PROGRAM, U B I C l E  FOR CDC 7600 
S n L U T I f l N  3F CAUCHY-RIFYANN EQS. FOR INCOMPR. FLOW DVEP THTN RICONV 
A I Q F f l I L  U S I N G  VERSIClN F O F  CAUCHY-RTFMANN SnLVER ( W I T H  EXTR4 TERMS 
CONTAINTNG V A R I A B L E  Cf lEFFSo) ,  
A T R F f l I L  C H r ) R F  I S  FROM X=-o5 TO +OF; .  

THE MFTHOD AND T H E  PROGPAM ARE DFSCRIBEO TN NASA TN D - 7 9 3 4  
RY E o  D o  M A R T I N  AND He LOMAX. 

D IMFNS ION 
DI McN 5 ION 
DTMENSI f lN  SETA1(129) ,RETA2(  1 2 9 ) r R E T A 3 ( 1 ? 9 )  r B F T A 4 f  129) 
COMMflN NFX, NXINEYINYINXP~~KPV 
COMYnN/TOFF/NIM,ALF,SFT1GAM 

U (  129,129) r V (  179, 130 ) ,VT( 129)  t V B (  1291, U L (  129) I VR ( 129) 
IJV I 129 ) ,ALF( t 2 9 1 I EFT ! 129 1 9 GAM ( 129)  

X J I J (  JU)  = X L  + H X * F L O A T ( J U - l )  
Y K I J I K U I  = YL + HY* (FLOAT(KUI -1 .5 )  
X J V ( J V 1  = X L  + H X * ( F L n A T I J V I - 1 . 5 )  
Y K V ( K V 1  = Y L  + PY*FLOA?(KV- l )  
R H n t X V Y )  = S Q R T ( ( ( X + . 5 ) * * 2  + Y * Y ) / ( ( X - . 5 ) * * 2  + Y * Y ) )  
ANPHI ( XVY) = ATANZ(Y 1X-.5) - ATAN2(Y,X+-5)  
I J € X ( X * Y )  = F C T R * l l .  - X*AL f lG(RH@(X,Y I )  - Y * A N P H I f X , Y )  
V E X ( X 9 Y )  = F C T R * ( Y * A L C I G ( P H O ( X I Y ) ) -  X * A N P H I ( X r Y ) )  

F l ( J U )  = X J I I I J U )  - 0 5  
F 2 f J U )  = X J U ( J U )  + 05 

FCTR = 4./3014159765 
FORMAT ( 4 1 5  9 4 E 1 0  00 9 3 1 5 )  
READ( 5.1 1 NEXT NXINEY ~NYIXLIXUIY LpYU ,NBC,NUBDRYILASCAS 
CALL  S F C f l Y D ( T T 1 I  
THE I N P U T  VALUES OF X L  AND XU ARE NOMINAL VAL1JEStUSED TO 
COMPUTE TqE FXACT VALUES, 
HX = ( X U  - X L ) / F L O A T ( N X )  

XL = -05 - H X * I J L E  - 1) 

HY = ( Y U  - Y L I / F L O A T ( N Y )  
JM = 1 + NX 
K Y  = 1 + NY 
NXP2 = 2 + NX 
N Y P 2  = 2 + NY 
RET4 = H Y I H X  
B E T S O  = RETA**2  

J L F  = 1.005 + ( - 0 5  - XL)/HX 

XU = X L  + HX*(NX - - 5 )  

ALPHA2 = -200 
DO 1 2 7  J = 2 r N X  

ALPHA1 = F l t J )  
R E T A 4 f J )  = -BETA*ALPHAZ 
B E T A 3 t  J) = - B E l A * A L P H A l  
R E T A Z ( J 1  = BETA - B E T A 4 f J )  
R E T A l t J )  = BETA + R E T A 3 ( J )  
ALF( J) = BETA*BETAZ(J )  
GAM ( J  1 = BETA*RETA 1( J ) 

ALPHA2 = F2(J)  
B E T I J )  = 20 + A L F t J I  + G A M t J )  

CD N f  I NUE 
I N I T I A L I Z E  I N T E R I O R  VALUES OF MASS SnURCES AND VDRTTCITY ( F  IS 
EQUIV. Tf l  V EXCEPT AT K = KM AND G IS E O U I V e  TO U)-- 
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1 2  
11 

c +++ 

9 

c: +++ 
C 

119 
121 

124 

l?? 

1 2 5  

123 

1 Zh 

120 

16 
1 5  

r +++ 
C 
C 

17 

18 
19 

7 9  



20 

2 1  
2 2  
2 3  

76 

77 

3 5  
3 b  

78 

29 

25 
24 
90 

3 8  
3 9  

40 

2-.5 t n  + . 5 . * / / *  b ! R C = * , I 3 r * r  I F  N R C  IS 1 9  EXACT BC' S ARF IMPOSFD 
?FAR FROY A I R F O I L :  IF N R C  IS 2 9  U AND V ARE ZERO ON OUTER ROIJNDARY. 
4*//* NURDRY=**I3,*. ROW OF I J ( J r I 0  J U S T  f M S I D E  UPPER BOIJNPARY, I o € .  
4 9  1 1 (  JTKM], 1 s  COMPUTED O l F F F R E N T L Y  ACCORDING- TO S P E C I F I E D  NURDRYo* 
4/* TF NVRDRY= 1, I J f J r K M )  IS COMPUTED FROM U S P F C I F I E D  AT Y=YKU(KM) 
4, DETERMTYFD FROY SAME P F L A T I O M  T H A T  DFTERMINFS OUTER. CONDS.* 
4 /* = 29 [I( JIKM) IS COMPUTED USTNG 1ST-ORDER-ACC. ONE-SIDE 

4/  * = 3, U ( J 9 K M )  IS COMPUTE!' U S I N G  ZND-ORDER-ACC- ONE-SIDE 
4 P  Y-GERIV. I N  ROTAT. FQ. AT Y = Ytl, W I T H  U SPECTFTED THERE.*// 
5* NX= *, 13,  * NY=* 9 1  3 9 *  XL=* rF lO .6  r *  t XIJ=* 9 F1O r b  T * T  Y L=* 9F1016 9 

6 * 9  YlJ=*,  F10 069 * q  

73H X J l J  9 7 X  93 H YKU, 8 X  9 1 H U  , 9X 9 3H!JEX 9 8X,4HERRlJ, 11 X 93 HX J V  r 7 X  
8,8Xr3HVEX, 8 X r 4 H F R R V )  

4D V-DFRTV, T N  RPTAT-  EcJr AT Y = Y U T  WITH U S P F C I F I E D  THERE.* 

HX=*TE 15.79 *, HY=*r El 5,7r* . * / / 9X  r l  H J  ,3X r l H K  9 6 x 9  

3HYKVr 8 x 9  1HV 

WP I TF ( 6  9 19 ) 
FD9MA T(  6 x 9  2 T 4, F 1 1- 6 s 3F10, 6, E l  5 7 , F11 6 13Fl.O 6 9 E 1 5  07 1 

NPC 9 NURDRY 9 NX 9 NY * XL, XU, YL YU 9 HX HY 

K I  = N Y / 1 6  
YF (KI.FO.0) KT = 1 
I F  IMX-2**NEX.EQ0OI GQ Tn 2 1  
J I  = NX/?O 
GI! TO 22 
J T  = N X / M  
I C  (JT.EO.n) J I  = 1 
FnPMAT 1 1 x 1  
DO 74 K = 1 , K M I K I  

WR I T F  I6 9 23 1 
YE, = Y K U ( K 1  
YR = Y K V I K  1 
QP 25 J = l r J M r J T  

Xd = XJIJIJ) 
X9 = X J V f J )  
TF (J.EQ.JM.nR.K.FOo11 GO T O  26 
l lFXA = l l F X 8 X i 4 , Y A )  
I I A  = U ( J r K 1  
GO T P  2 7  
1JFXA = 50 
I J A  = 00 
TF f J O F Q I 1 )  Gn T n  2 8  
Y F  ( K , R ] E . ~ )  G O  t n  3 5  

IX T n  36 

G ~ I  Tn 29 

IF (APS(XaX-.35).GEo1.€-5) Gn TT! 3 5  
VFXD = 5. 

VFXB = V F X I X R r Y R 1  
V B L  = V q J , K )  

VFXR = 0. 
v 9 1  = 0. 
FRRlJ = C I A  - UEXA 
FRGV = V B l  - VEXR 
WG TTE( 6 7  2 0 )  J r K v X A  *YA r U A ~ U E X A r E P ~ U , X R , Y B , V B Z  r V E X R 9  ERPV 

CONT TNlJF 
CONTI  NUF 
F n R M A T ( / / *  7 1 = * r F 1 2 . 4 r *  SECor T2=*1E12.4r* St?cor  f 3 = * , € 1 2 . 4 , *  SFC. 

W R I T E ( b r 3 5 )  T l r T 2 ~ T 3  

FORMAT ( / / 2 6 X  r l  H J  r 6 X r 3 H X J U r  10x1 LHUr 13x9 3HUEX r 11x9 3 H X J V v  10x9 lHV,  13x9  

FOPMAT 123x1 I41 F11.6~ 2E 1 5 . 7 ~ F l 1 . 6 1 2 E 1 6 r  7) 

I*) 

F Q Q M A T ( / / / *  VELOCITIES b T  V = @ , * I  

1 3 H  VE X /  / I  
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42 

46 

47 

45 

48 

81 
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1 2  
9 
8 

C 
C 
C 

2 3  

2 4  

2 5  
2 2  
2 1  

2 7  

2 6  
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APPENDIX F 

CYCLIC REDUCTION FOR VERSIONS B TO E OF CAUCHY-RIEMANN SOLVER 

A detailed algorithm is outlined here for the recursive cyclic reduction 
of the block-tridiagonal matrix equation in the form of equations (50) and 
(59) for use in the FORTRAN programs for versions B to E of the extended 
Cauchy-Riemann solvers. The algorithm is a variant of Buneman's (ref. 2) 
double cyclic reduction in which scalar-tridiagonal-equation solutions are 
obtained by the Thomas algorithm (Gaussian elimination). Recursive cyclic 
reduction was devised by Prof. G. Golub with collaboration of Dr. R. Hockney 
(see refs. 1 to 3 ) .  The method is based on odd/even reduction, which was 
used extensively by Hockney (ref. 1) in direct two-dimensional Poisson solvers 
and was the basis for the extension by Buneman (ref. 2) to his double cyclic 
reduction algorithm for solving Poisson's equation. 
a treatise on the development of the method. 

Refer to reference 5 for 

The block-tridiagonal matrix equation to be solved represents the system 
of n matrix equations: 

-v + C0Vk - Vk+l = p k  ( 0 )  k- 1 ( k  = 1, 2, . 
where n = n l  - 1, n l  = 2L with L 
a known m-dimensional vector, 

an integer, and in which each p i o )  is 

Each Vk is an m-dimensional vector to be determined: 

. . .  

where, for simplicity, we have set, in equation (Fl), 

v = v  = o  
nl 0 

and cg is the m-dimensional tridiagonal matrix c defined by equa- 
tions (21c) and (21d): 

with a j ,  B j ,  and y -  defined in terms.of the parameter 6 and in terms of 

solver. 
and 62,n', whici are specified for j = 1 t o  m in each version o f  the 61 , j  
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The c y c l i c - r e d u c t i o n  a l g o r i t h m  depends on t h e  m a t r i x  f a c t o r i z a t i o n  de f ined  
as f o l l o w s :  each level  of t h e  r e c u r s i o n  p r o c e s s  i s  denoted by i n t e g e r  R, 
which r anges  from 1 t o  L-1. For each R ,  d e f i n e  a n  i n t e g e r  N and q u a n t i t i e s  
dRYM as fo l lows :  

( a  = 1, 2, . . .) L - 1) 
R N = 2  

Then, g iven  C g ,  f o r  each R t h e r e  i s  a m a t r i x  C R  d e f i n e d  by 

c = c2 - 21 
R R- 1 

which has  N t r i d i a g o n a l  m a t r i c e s  as f a c t o r s :  

i n  which t h e  Mth f a c t o r  is  

(FlOa) 
R = 1 t o  L - 1, 

M = l t o N  -I- ‘R,Mr 

(FlOb) 

and 

6‘. = B .  + d (Floc)  
3 3 RYM 

where -ai, Bj, and -yj are t h e  e lements  of C o  i n  e q u a t i o n s  (F5). (Note 
t h a t  t h e  v a l u e s  of can a l s o  be o b t a i n e d  from a c o s i n e  f u n c t i o n  ( e . g . ,  
eq. (21b) i n  r e f .  2 5 ) ,  b u t  are c a l c u l a t e d  i n  t h e  sample FORTRAN programs 
l i s t e d  i n  appendices  A t o  E by use  of e q u a t i o n s  (F7).  Note a l s o  t h e  d i f f e r -  
ence  i n  n o t a t i o n ,  where C R  h e r e  has  t h e  s a m e  r o l e  as C u  i n  r e f .  25.)  

d,,, 

For t h e  f i r s t  level  of r e d u c t i o n  ( R  = l ) ,  m u l t i p l y  each of t h e  even 
e q u a t i o n s  ( k  = 2, 4, . . ., n - 1 )  i n  e q u a t i o n s  ( F l )  by C O  and add t o  i t  
t h e  a d j a c e n t  e q u a t i o n s  above and below t o  o b t a i n  t h e  reduced system 

86 



where 

(F12a) 

(F12b) 

A s p e c i a l  d e v i c e  w a s  i n t r o d u c e d . b y  Buneman ( r e f .  2)  f o r  avo id ing  a l l  m a t r i x  
m u l t i p l i c a t i o n s  (and a consequent s t a b i l i t y  problem) i n  t h e  f i n a l  s o l u t i o n  
process .  The d e v i c e  removes t h e  m a t r i x  CO from t h e  r i g h t  s i d e  of equa- 
t i o n  (F12b) and r e p l a c e s  i t  by 
need never  be  performed. To u s e  t h i s  d e v i c e ,  s i n c e  w e  wish t o  remove CO 
and i n s e r t  c1, and s i n c e  c, c o n t a i n s  c i ,  w e  w r i t e  equa t ion  (F12b) as 

c 1 ,  so t h a t  t h e  impl ied  m a t r i x  m u l t i p l i c a t i o n  

Now define q j l )  and p i 1 )  by denot ing  t h e  f i r s t  t e r m  by C 1 q i l )  

remainder by p k  . Thus 

and t h e  
.- (1) 

where 

(F13a) 

(F13b) 

(F13c) 

Note t h a t  equa t ion  (F13b) i s  j u s t  a t r i d i a g o n a l  m a t r i x  equa t ion  t h a t  can b e  

so lved  f o r  q i l ) ,  and t h e n  p i 1 )  

s u b s t i t u t i o n  of e q u a t i o n  (F13b) i n t o  (F13c) g i v e s  a n  equa t ion  t h a t  can be  

is ob ta ined  from e q u a t i o n  (F13c). Also,  

so lved  f o r  p i 1 )  wi thou t  knowing q k  (1) : 

(F13d) 

For t h e  second and h i g h e r  levels of r e d u c t i o n  ( a  = 2 ,  3 ,  . . ., L - l ) ,  
we l e t  

h = (2)&‘2 = N/4 0714) 
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and i n  t h e  remaining reduced set of e q u a t i o n s  w e  m u l t i p l y  each  of  t h e  even 
e q u a t i o n s  ( k  = N, 2N, 3N, . . ., nl - N) by Cg-1 and add t o  i t  t h e  a d j a c e n t  
e q u a t i o n s  above and below t o  o b t a i n ,  f o r  R = 2 t o  L - 1: 

where 

A s  i n  equa t ions  (F13) above, w e  wish t o  d e f i n e  siR) and piR) s o  t h a t  

(F17a) 

and t h i s  can b e  done by f i r s t  s u b s t i t u t i n g  equa t ion  (F17a) ( t r e a t i n g  r i " '  

a f u n c t i o n  of i t s  s u p e r s c r i p t  R and i t s  s u b s c r i p t  k )  i n t o  each t e r m  on t h e  
r i g h t  s i d e  of e q u a t i o n  (F16) and then  u s i n g  a procedure  d i r e c t l y  analogous t o  
t h a t  used t o  o b t a i n  e q u a t i o n  (F13) from (F12) t o  e l i m i n a t e  i n  f a v o r  of 
C L .  W e  t hen  have equa t ion  (F17a) i n  p l a c e  o f  (F16) ,  w i t h  t h e  r e s u l t s  

as 

CR-l 

(F17b) 

(F17c) 

Furthermore,  one can o b t a i n  (analogous t o  eq.  (F13d)) a n  equa t ion  t o  s o l v e  f o r  

P p< "" wi thou t  knowing any of t h e  q k  . 
q i "  i n  t e r m s  of f u n c t i o n s  ('I, and t h e  r e s u l t i n g  q i R )  i s  then  t r e a t e d  as 
a f u n c t i o n  of i t s  s u b s c r i p t  Pkk and s u p e r s c r i p t  R t o  o b t a i n  expres s ions  f o r  

( R )  I f  e q u a t i o n  (F17c) is so lved  f o r  

(a -1 )  t o  s u b s t i t u t e  i n t o  (F17b),  one o b t a i n s  ( a - 1 >  and q 
" k  ' q&2h 9 k+2h 

(F17d) 

The procedure  f o r  t h e  a l g o r i t h m  t o  s o l v e  e q u a t i o n s  ( F l ) ,  t o  de te rmine  a l l  
v j , k ,  u s e s  t h e  e q u a t i o n s  d e r i v e d  above as fo l lows :  

1. F i r s t ,  f o r  i n t e g e r  L = l o g z n l ,  compute t h e  a r r a y  da,M f o r  R = 1 
t o  L-1 and M = 1 t o  N us ing  equa t ions  (F6) and (F7).  
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2. For R = 1, start the forward recursion with p i o )  given by equa- 
tion (F2) for k = l to n. Use the Thomas algorithm (Gaussian elimination) 
to solve equation (F13d) in the form 

successively for k = 2, 4 ,  . . ., n-1, where CO is the tridiagonal matrix 
defined in equation (F5) and where 0il)is defined by 

(F18b) 

After solving equation (F18a) for each unknown 

p i ' )  from (F18b). 

3 .  For each R = 2, 3 ,  . . ., L-1, first 
form 

vector Oi l )  , then determine 

write equation (F17d) in the 

for each k = N, 2N, . . ., nl-N, where ('I is defined by ' k  

Equation (F19a) is of the form (cf. eq. - 

(F19a) 

(F19b) 

(F20a) 
L J 

where z:') represents the total vector on the right side of equation (F19a) 

and each C ( M )  is a tridiagonal matrix defined by (F10). 

so that 

Similarly, let the R- 1 
bracketed quantity on the left side of equation (F20a) be denoted by Zk ( 2 )  

(F20b) 

etc. 
unknown vector in equation (F20a), and use the Thomas algorithm to solve (F20a) 

for z i 2 ) ,  then with that vector known, solve equation (F20b) for the brac- 
keted quantity, and so forth, until 

obtained by a sequence of tridiagonal solutions, and then p(') i s  obtained 

Thus the procedure at this step is to first consider z h 2 '  as the 

0"' is known. Thus 0;') has been k 
k 
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from equation (F19b). When this is done for all k = N, 2N, . . ., nl-N, 
increase R and repeat this step 3 .  

After step 3 has been done for R = L-1, all the p i R )  are known 4 .  

that are required for the backward recursion (back substitution). The back 
substition proceeds successively, for each R from L-1 to 0. 
~ - - .  For R = L-1, L-2, . . ., 1, use equations (F15) and (F17a) (with (F11) and 
(F13a) as well) in the form 

Ca4$Q) = v + v ( a )  
k-N k+N + ‘ k  

for  k = N 9  3N, 5N, . . ., nl-N, where $,&‘I is defined by 

or with equations (F17c) and (F13c), 

(F21a) 

(F21b) 

(F21c) 

for k = N, 3N, 5N, . . ., nl-N. Thus, one can now solve equation (F21a), by 
use of the Thomas algorithm for a sequence of tridiagonal solutions in a 

manner analogous to that used in equations (F20), to obtain $$’), with which 

Vk is then obtained from (F21c) for k = N, 3 N ,  5N, . . ., nl-N. 
5. For R = 0, equation (F1) can be written as 

c v  = v  + v  ( 0 )  
0 k k-1 k+l + P k  

and solved using the Thomas algorithm to obtain vk for k = 1 ,  3, 5, . . ., n. 
In a mzchine computation using this algorithm, the components (as needed) 

of each of the vectors F k ,  p i R ) ,  and Vk can all occupy the same array in 
computer memory for one value of k .  Therefore, in addition to a relatively 
small array for 
(ml+l)x(nl+l), is needed ( v j , k )  along with an ml-dimensional dummy vector for 

the intermediate storage either of 
equations (F21). In addition, the Thomas algorithm itself requires one dummy 
ml vector. 

dR,M given by equations ( F 7 ) ,  only one large array, 

in equations (F18) or of 4 ( a )  in 
k ‘ k  
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